Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc3lem2 Structured version   Visualization version   GIF version

Theorem axdc3lem2 9156
 Description: Lemma for axdc3 9159. We have constructed a "candidate set" 𝑆, which consists of all finite sequences 𝑠 that satisfy our property of interest, namely 𝑠(𝑥 + 1) ∈ 𝐹(𝑠(𝑥)) on its domain, but with the added constraint that 𝑠(0) = 𝐶. These sets are possible "initial segments" of the infinite sequence satisfying these constraints, but we can leverage the standard ax-dc 9151 (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely (ℎ‘𝑛):𝑚⟶𝐴 (for some integer 𝑚). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc 9151 yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that given the sequence ℎ, we can construct the sequence 𝑔 that we are after. (Contributed by Mario Carneiro, 30-Jan-2013.)
Hypotheses
Ref Expression
axdc3lem2.1 𝐴 ∈ V
axdc3lem2.2 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
axdc3lem2.3 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
Assertion
Ref Expression
axdc3lem2 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
Distinct variable groups:   𝐴,𝑔,   𝐴,𝑛,𝑠   𝐶,𝑔,   𝐶,𝑛,𝑠   𝑔,𝐹,   𝑛,𝐹,𝑠   𝑘,𝐺   𝑆,𝑘,𝑠   𝑥,𝑆,𝑦   𝑔,𝑘,   ,𝑠   𝑥,,𝑦   𝑘,𝑛
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑘)   𝐶(𝑥,𝑦,𝑘)   𝑆(𝑔,,𝑛)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑔,,𝑛,𝑠)

Proof of Theorem axdc3lem2
Dummy variables 𝑖 𝑗 𝑚 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . . 13 (𝑚 = ∅ → 𝑚 = ∅)
2 fveq2 6103 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (𝑚) = (‘∅))
32dmeqd 5248 . . . . . . . . . . . . 13 (𝑚 = ∅ → dom (𝑚) = dom (‘∅))
41, 3eleq12d 2682 . . . . . . . . . . . 12 (𝑚 = ∅ → (𝑚 ∈ dom (𝑚) ↔ ∅ ∈ dom (‘∅)))
5 eleq2 2677 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑗𝑚𝑗 ∈ ∅))
62sseq2d 3596 . . . . . . . . . . . . 13 (𝑚 = ∅ → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (‘∅)))
75, 6imbi12d 333 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
84, 7anbi12d 743 . . . . . . . . . . 11 (𝑚 = ∅ → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅)))))
9 id 22 . . . . . . . . . . . . 13 (𝑚 = 𝑖𝑚 = 𝑖)
10 fveq2 6103 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚) = (𝑖))
1110dmeqd 5248 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → dom (𝑚) = dom (𝑖))
129, 11eleq12d 2682 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (𝑚 ∈ dom (𝑚) ↔ 𝑖 ∈ dom (𝑖)))
13 elequ2 1991 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (𝑗𝑚𝑗𝑖))
1410sseq2d 3596 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑖)))
1513, 14imbi12d 333 . . . . . . . . . . . 12 (𝑚 = 𝑖 → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗𝑖 → (𝑗) ⊆ (𝑖))))
1612, 15anbi12d 743 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖)))))
17 id 22 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖𝑚 = suc 𝑖)
18 fveq2 6103 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → (𝑚) = (‘suc 𝑖))
1918dmeqd 5248 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → dom (𝑚) = dom (‘suc 𝑖))
2017, 19eleq12d 2682 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → (𝑚 ∈ dom (𝑚) ↔ suc 𝑖 ∈ dom (‘suc 𝑖)))
21 eleq2 2677 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑗𝑚𝑗 ∈ suc 𝑖))
2218sseq2d 3596 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (‘suc 𝑖)))
2321, 22imbi12d 333 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑗𝑚 → (𝑗) ⊆ (𝑚)) ↔ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
2420, 23anbi12d 743 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → ((𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))) ↔ (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
25 peano1 6977 . . . . . . . . . . . . . . 15 ∅ ∈ ω
26 ffvelrn 6265 . . . . . . . . . . . . . . 15 ((:ω⟶𝑆 ∧ ∅ ∈ ω) → (‘∅) ∈ 𝑆)
2725, 26mpan2 703 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (‘∅) ∈ 𝑆)
28 axdc3lem2.2 . . . . . . . . . . . . . . . . . 18 𝑆 = {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
29 fdm 5964 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠:suc 𝑛𝐴 → dom 𝑠 = suc 𝑛)
30 nnord 6965 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ω → Ord 𝑛)
31 0elsuc 6927 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Ord 𝑛 → ∅ ∈ suc 𝑛)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → ∅ ∈ suc 𝑛)
33 peano2 6978 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
34 eleq2 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ↔ ∅ ∈ suc 𝑛))
35 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑠 = suc 𝑛 → (dom 𝑠 ∈ ω ↔ suc 𝑛 ∈ ω))
3634, 35anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑠 = suc 𝑛 → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω)))
3736biimprcd 239 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∅ ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω) → (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
3832, 33, 37syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ω → (dom 𝑠 = suc 𝑛 → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
3929, 38syl5com 31 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠:suc 𝑛𝐴 → (𝑛 ∈ ω → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
40393ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)))
4140impcom 445 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω))
4241rexlimiva 3010 . . . . . . . . . . . . . . . . . . 19 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω))
4342ss2abi 3637 . . . . . . . . . . . . . . . . . 18 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}
4428, 43eqsstri 3598 . . . . . . . . . . . . . . . . 17 𝑆 ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}
4544sseli 3564 . . . . . . . . . . . . . . . 16 ((‘∅) ∈ 𝑆 → (‘∅) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
46 fvex 6113 . . . . . . . . . . . . . . . . 17 (‘∅) ∈ V
47 dmeq 5246 . . . . . . . . . . . . . . . . . . 19 (𝑠 = (‘∅) → dom 𝑠 = dom (‘∅))
4847eleq2d 2673 . . . . . . . . . . . . . . . . . 18 (𝑠 = (‘∅) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (‘∅)))
4947eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑠 = (‘∅) → (dom 𝑠 ∈ ω ↔ dom (‘∅) ∈ ω))
5048, 49anbi12d 743 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘∅) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω)))
5146, 50elab 3319 . . . . . . . . . . . . . . . 16 ((‘∅) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω))
5245, 51sylib 207 . . . . . . . . . . . . . . 15 ((‘∅) ∈ 𝑆 → (∅ ∈ dom (‘∅) ∧ dom (‘∅) ∈ ω))
5352simpld 474 . . . . . . . . . . . . . 14 ((‘∅) ∈ 𝑆 → ∅ ∈ dom (‘∅))
5427, 53syl 17 . . . . . . . . . . . . 13 (:ω⟶𝑆 → ∅ ∈ dom (‘∅))
55 noel 3878 . . . . . . . . . . . . . 14 ¬ 𝑗 ∈ ∅
5655pm2.21i 115 . . . . . . . . . . . . 13 (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))
5754, 56jctir 559 . . . . . . . . . . . 12 (:ω⟶𝑆 → (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
5857adantr 480 . . . . . . . . . . 11 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (∅ ∈ dom (‘∅) ∧ (𝑗 ∈ ∅ → (𝑗) ⊆ (‘∅))))
59 ffvelrn 6265 . . . . . . . . . . . . . . 15 ((:ω⟶𝑆𝑖 ∈ ω) → (𝑖) ∈ 𝑆)
6059ancoms 468 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ :ω⟶𝑆) → (𝑖) ∈ 𝑆)
6160adantrr 749 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑖) ∈ 𝑆)
62 suceq 5707 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → suc 𝑘 = suc 𝑖)
6362fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (‘suc 𝑘) = (‘suc 𝑖))
64 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (𝑘) = (𝑖))
6564fveq2d 6107 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (𝐺‘(𝑘)) = (𝐺‘(𝑖)))
6663, 65eleq12d 2682 . . . . . . . . . . . . . . 15 (𝑘 = 𝑖 → ((‘suc 𝑘) ∈ (𝐺‘(𝑘)) ↔ (‘suc 𝑖) ∈ (𝐺‘(𝑖))))
6766rspcva 3280 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘suc 𝑖) ∈ (𝐺‘(𝑖)))
6867adantrl 748 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (‘suc 𝑖) ∈ (𝐺‘(𝑖)))
6944sseli 3564 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ 𝑆 → (𝑖) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
70 fvex 6113 . . . . . . . . . . . . . . . . . . . . 21 (𝑖) ∈ V
71 dmeq 5246 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = (𝑖) → dom 𝑠 = dom (𝑖))
7271eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑖) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (𝑖)))
7371eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = (𝑖) → (dom 𝑠 ∈ ω ↔ dom (𝑖) ∈ ω))
7472, 73anbi12d 743 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑖) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω)))
7570, 74elab 3319 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω))
7669, 75sylib 207 . . . . . . . . . . . . . . . . . . 19 ((𝑖) ∈ 𝑆 → (∅ ∈ dom (𝑖) ∧ dom (𝑖) ∈ ω))
7776simprd 478 . . . . . . . . . . . . . . . . . 18 ((𝑖) ∈ 𝑆 → dom (𝑖) ∈ ω)
78 nnord 6965 . . . . . . . . . . . . . . . . . 18 (dom (𝑖) ∈ ω → Ord dom (𝑖))
79 ordsucelsuc 6914 . . . . . . . . . . . . . . . . . 18 (Ord dom (𝑖) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
8077, 78, 793syl 18 . . . . . . . . . . . . . . . . 17 ((𝑖) ∈ 𝑆 → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
8180adantr 480 . . . . . . . . . . . . . . . 16 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
82 dmeq 5246 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑖) → dom 𝑥 = dom (𝑖))
83 suceq 5707 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑥 = dom (𝑖) → suc dom 𝑥 = suc dom (𝑖))
8482, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → suc dom 𝑥 = suc dom (𝑖))
8584eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑖) → (dom 𝑦 = suc dom 𝑥 ↔ dom 𝑦 = suc dom (𝑖)))
8682reseq2d 5317 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → (𝑦 ↾ dom 𝑥) = (𝑦 ↾ dom (𝑖)))
87 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝑖) → 𝑥 = (𝑖))
8886, 87eqeq12d 2625 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑖) → ((𝑦 ↾ dom 𝑥) = 𝑥 ↔ (𝑦 ↾ dom (𝑖)) = (𝑖)))
8985, 88anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑖) → ((dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥) ↔ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))))
9089rabbidv 3164 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑖) → {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)} = {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))})
91 axdc3lem2.3 . . . . . . . . . . . . . . . . . . . . . 22 𝐺 = (𝑥𝑆 ↦ {𝑦𝑆 ∣ (dom 𝑦 = suc dom 𝑥 ∧ (𝑦 ↾ dom 𝑥) = 𝑥)})
92 axdc3lem2.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐴 ∈ V
9392, 28axdc3lem 9155 . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 ∈ V
9493rabex 4740 . . . . . . . . . . . . . . . . . . . . . 22 {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))} ∈ V
9590, 91, 94fvmpt 6191 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖) ∈ 𝑆 → (𝐺‘(𝑖)) = {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))})
9695eleq2d 2673 . . . . . . . . . . . . . . . . . . . 20 ((𝑖) ∈ 𝑆 → ((‘suc 𝑖) ∈ (𝐺‘(𝑖)) ↔ (‘suc 𝑖) ∈ {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))}))
97 dmeq 5246 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (‘suc 𝑖) → dom 𝑦 = dom (‘suc 𝑖))
9897eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (‘suc 𝑖) → (dom 𝑦 = suc dom (𝑖) ↔ dom (‘suc 𝑖) = suc dom (𝑖)))
99 reseq1 5311 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = (‘suc 𝑖) → (𝑦 ↾ dom (𝑖)) = ((‘suc 𝑖) ↾ dom (𝑖)))
10099eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (‘suc 𝑖) → ((𝑦 ↾ dom (𝑖)) = (𝑖) ↔ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))
10198, 100anbi12d 743 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (‘suc 𝑖) → ((dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖)) ↔ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))))
102101elrab 3331 . . . . . . . . . . . . . . . . . . . 20 ((‘suc 𝑖) ∈ {𝑦𝑆 ∣ (dom 𝑦 = suc dom (𝑖) ∧ (𝑦 ↾ dom (𝑖)) = (𝑖))} ↔ ((‘suc 𝑖) ∈ 𝑆 ∧ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))))
10396, 102syl6bb 275 . . . . . . . . . . . . . . . . . . 19 ((𝑖) ∈ 𝑆 → ((‘suc 𝑖) ∈ (𝐺‘(𝑖)) ↔ ((‘suc 𝑖) ∈ 𝑆 ∧ (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))))
104103simplbda 652 . . . . . . . . . . . . . . . . . 18 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (dom (‘suc 𝑖) = suc dom (𝑖) ∧ ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖)))
105104simpld 474 . . . . . . . . . . . . . . . . 17 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → dom (‘suc 𝑖) = suc dom (𝑖))
106105eleq2d 2673 . . . . . . . . . . . . . . . 16 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ↔ suc 𝑖 ∈ suc dom (𝑖)))
10781, 106bitr4d 270 . . . . . . . . . . . . . . 15 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) ↔ suc 𝑖 ∈ dom (‘suc 𝑖)))
108107biimpd 218 . . . . . . . . . . . . . 14 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → (𝑖 ∈ dom (𝑖) → suc 𝑖 ∈ dom (‘suc 𝑖)))
109104simprd 478 . . . . . . . . . . . . . . 15 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖))
110 resss 5342 . . . . . . . . . . . . . . . 16 ((‘suc 𝑖) ↾ dom (𝑖)) ⊆ (‘suc 𝑖)
111 sseq1 3589 . . . . . . . . . . . . . . . 16 (((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖) → (((‘suc 𝑖) ↾ dom (𝑖)) ⊆ (‘suc 𝑖) ↔ (𝑖) ⊆ (‘suc 𝑖)))
112110, 111mpbii 222 . . . . . . . . . . . . . . 15 (((‘suc 𝑖) ↾ dom (𝑖)) = (𝑖) → (𝑖) ⊆ (‘suc 𝑖))
113 elsuci 5708 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ suc 𝑖 → (𝑗𝑖𝑗 = 𝑖))
114 pm2.27 41 . . . . . . . . . . . . . . . . . . 19 (𝑗𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗) ⊆ (𝑖)))
115 sstr2 3575 . . . . . . . . . . . . . . . . . . 19 ((𝑗) ⊆ (𝑖) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖)))
116114, 115syl6 34 . . . . . . . . . . . . . . . . . 18 (𝑗𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
117 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑖 → (𝑗) = (𝑖))
118117sseq1d 3595 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → ((𝑗) ⊆ (‘suc 𝑖) ↔ (𝑖) ⊆ (‘suc 𝑖)))
119118biimprd 237 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖)))
120119a1d 25 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
121116, 120jaoi 393 . . . . . . . . . . . . . . . . 17 ((𝑗𝑖𝑗 = 𝑖) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
122113, 121syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ suc 𝑖 → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → ((𝑖) ⊆ (‘suc 𝑖) → (𝑗) ⊆ (‘suc 𝑖))))
123122com13 86 . . . . . . . . . . . . . . 15 ((𝑖) ⊆ (‘suc 𝑖) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
124109, 112, 1233syl 18 . . . . . . . . . . . . . 14 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((𝑗𝑖 → (𝑗) ⊆ (𝑖)) → (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))
125108, 124anim12d 584 . . . . . . . . . . . . 13 (((𝑖) ∈ 𝑆 ∧ (‘suc 𝑖) ∈ (𝐺‘(𝑖))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
12661, 68, 125syl2anc 691 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖)))))
127126ex 449 . . . . . . . . . . 11 (𝑖 ∈ ω → ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((𝑖 ∈ dom (𝑖) ∧ (𝑗𝑖 → (𝑗) ⊆ (𝑖))) → (suc 𝑖 ∈ dom (‘suc 𝑖) ∧ (𝑗 ∈ suc 𝑖 → (𝑗) ⊆ (‘suc 𝑖))))))
1288, 16, 24, 58, 127finds2 6986 . . . . . . . . . 10 (𝑚 ∈ ω → ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚)))))
129128imp 444 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑚 ∈ dom (𝑚) ∧ (𝑗𝑚 → (𝑗) ⊆ (𝑚))))
130129simprd 478 . . . . . . . 8 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑗𝑚 → (𝑗) ⊆ (𝑚)))
131130expcom 450 . . . . . . 7 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → (𝑗𝑚 → (𝑗) ⊆ (𝑚))))
132131ralrimdv 2951 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → ∀𝑗𝑚 (𝑗) ⊆ (𝑚)))
133132ralrimiv 2948 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚))
134 frn 5966 . . . . . . . . . . . 12 (:ω⟶𝑆 → ran 𝑆)
135 ffun 5961 . . . . . . . . . . . . . . . 16 (𝑠:suc 𝑛𝐴 → Fun 𝑠)
1361353ad2ant1 1075 . . . . . . . . . . . . . . 15 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → Fun 𝑠)
137136rexlimivw 3011 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → Fun 𝑠)
138137ss2abi 3637 . . . . . . . . . . . . 13 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ Fun 𝑠}
13928, 138eqsstri 3598 . . . . . . . . . . . 12 𝑆 ⊆ {𝑠 ∣ Fun 𝑠}
140134, 139syl6ss 3580 . . . . . . . . . . 11 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ Fun 𝑠})
141140sseld 3567 . . . . . . . . . 10 (:ω⟶𝑆 → (𝑢 ∈ ran 𝑢 ∈ {𝑠 ∣ Fun 𝑠}))
142 vex 3176 . . . . . . . . . . 11 𝑢 ∈ V
143 funeq 5823 . . . . . . . . . . 11 (𝑠 = 𝑢 → (Fun 𝑠 ↔ Fun 𝑢))
144142, 143elab 3319 . . . . . . . . . 10 (𝑢 ∈ {𝑠 ∣ Fun 𝑠} ↔ Fun 𝑢)
145141, 144syl6ib 240 . . . . . . . . 9 (:ω⟶𝑆 → (𝑢 ∈ ran → Fun 𝑢))
146145adantr 480 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → Fun 𝑢))
147 ffn 5958 . . . . . . . . 9 (:ω⟶𝑆 Fn ω)
148 fvelrnb 6153 . . . . . . . . . . . . 13 ( Fn ω → (𝑣 ∈ ran ↔ ∃𝑏 ∈ ω (𝑏) = 𝑣))
149 fvelrnb 6153 . . . . . . . . . . . . . . 15 ( Fn ω → (𝑢 ∈ ran ↔ ∃𝑎 ∈ ω (𝑎) = 𝑢))
150 nnord 6965 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 ∈ ω → Ord 𝑎)
151 nnord 6965 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ ω → Ord 𝑏)
152150, 151anim12i 588 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (Ord 𝑎 ∧ Ord 𝑏))
153 ordtri3or 5672 . . . . . . . . . . . . . . . . . . . . . . 23 ((Ord 𝑎 ∧ Ord 𝑏) → (𝑎𝑏𝑎 = 𝑏𝑏𝑎))
154 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 = 𝑏 → (𝑚) = (𝑏))
155154sseq2d 3596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 = 𝑏 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑏)))
156155raleqbi1dv 3123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 = 𝑏 → (∀𝑗𝑚 (𝑗) ⊆ (𝑚) ↔ ∀𝑗𝑏 (𝑗) ⊆ (𝑏)))
157156rspcv 3278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑏 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ∀𝑗𝑏 (𝑗) ⊆ (𝑏)))
158 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑎 → (𝑗) = (𝑎))
159158sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑎 → ((𝑗) ⊆ (𝑏) ↔ (𝑎) ⊆ (𝑏)))
160159rspccv 3279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑗𝑏 (𝑗) ⊆ (𝑏) → (𝑎𝑏 → (𝑎) ⊆ (𝑏)))
161157, 160syl6 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑏 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → (𝑎) ⊆ (𝑏))))
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → (𝑎) ⊆ (𝑏))))
1631623imp 1249 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑎𝑏) → (𝑎) ⊆ (𝑏))
164163orcd 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑎𝑏) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1651643exp 1256 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑎𝑏 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
166165com3r 85 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎𝑏 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
167 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = 𝑏 → (𝑎) = (𝑏))
168 eqimss 3620 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎) = (𝑏) → (𝑎) ⊆ (𝑏))
169168orcd 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎) = (𝑏) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
170167, 169syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = 𝑏 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1711702a1d 26 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑏 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
172 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 = 𝑎 → (𝑚) = (𝑎))
173172sseq2d 3596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 = 𝑎 → ((𝑗) ⊆ (𝑚) ↔ (𝑗) ⊆ (𝑎)))
174173raleqbi1dv 3123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 = 𝑎 → (∀𝑗𝑚 (𝑗) ⊆ (𝑚) ↔ ∀𝑗𝑎 (𝑗) ⊆ (𝑎)))
175174rspcv 3278 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ∀𝑗𝑎 (𝑗) ⊆ (𝑎)))
176 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑗 = 𝑏 → (𝑗) = (𝑏))
177176sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑗 = 𝑏 → ((𝑗) ⊆ (𝑎) ↔ (𝑏) ⊆ (𝑎)))
178177rspccv 3279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑗𝑎 (𝑗) ⊆ (𝑎) → (𝑏𝑎 → (𝑏) ⊆ (𝑎)))
179175, 178syl6 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑎 ∈ ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → (𝑏) ⊆ (𝑎))))
180179adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → (𝑏) ⊆ (𝑎))))
1811803imp 1249 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑏𝑎) → (𝑏) ⊆ (𝑎))
182181olcd 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑎 ∈ ω ∧ 𝑏 ∈ ω) ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) ∧ 𝑏𝑎) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))
1831823exp 1256 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑏𝑎 → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
184183com3r 85 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝑎 → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
185166, 171, 1843jaoi 1383 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝑏𝑎 = 𝑏𝑏𝑎) → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
186153, 185syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((Ord 𝑎 ∧ Ord 𝑏) → ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)))))
187152, 186mpcom 37 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → ((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎))))
188 sseq12 3591 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → ((𝑎) ⊆ (𝑏) ↔ 𝑢𝑣))
189 sseq12 3591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑏) = 𝑣 ∧ (𝑎) = 𝑢) → ((𝑏) ⊆ (𝑎) ↔ 𝑣𝑢))
190189ancoms 468 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → ((𝑏) ⊆ (𝑎) ↔ 𝑣𝑢))
191188, 190orbi12d 742 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)) ↔ (𝑢𝑣𝑣𝑢)))
192191biimpcd 238 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎) ⊆ (𝑏) ∨ (𝑏) ⊆ (𝑎)) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (𝑢𝑣𝑣𝑢)))
193187, 192syl6 34 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (𝑢𝑣𝑣𝑢))))
194193com23 84 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → (((𝑎) = 𝑢 ∧ (𝑏) = 𝑣) → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))
195194exp4b 630 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ω → (𝑏 ∈ ω → ((𝑎) = 𝑢 → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))))
196195com23 84 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ω → ((𝑎) = 𝑢 → (𝑏 ∈ ω → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))))
197196rexlimiv 3009 . . . . . . . . . . . . . . . 16 (∃𝑎 ∈ ω (𝑎) = 𝑢 → (𝑏 ∈ ω → ((𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
198197rexlimdv 3012 . . . . . . . . . . . . . . 15 (∃𝑎 ∈ ω (𝑎) = 𝑢 → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢))))
199149, 198syl6bi 242 . . . . . . . . . . . . . 14 ( Fn ω → (𝑢 ∈ ran → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
200199com23 84 . . . . . . . . . . . . 13 ( Fn ω → (∃𝑏 ∈ ω (𝑏) = 𝑣 → (𝑢 ∈ ran → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
201148, 200sylbid 229 . . . . . . . . . . . 12 ( Fn ω → (𝑣 ∈ ran → (𝑢 ∈ ran → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢𝑣𝑣𝑢)))))
202201com24 93 . . . . . . . . . . 11 ( Fn ω → (∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚) → (𝑢 ∈ ran → (𝑣 ∈ ran → (𝑢𝑣𝑣𝑢)))))
203202imp 444 . . . . . . . . . 10 (( Fn ω ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → (𝑣 ∈ ran → (𝑢𝑣𝑣𝑢))))
204203ralrimdv 2951 . . . . . . . . 9 (( Fn ω ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
205147, 204sylan 487 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
206146, 205jcad 554 . . . . . . 7 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → (𝑢 ∈ ran → (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢))))
207206ralrimiv 2948 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → ∀𝑢 ∈ ran (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)))
208 fununi 5878 . . . . . 6 (∀𝑢 ∈ ran (Fun 𝑢 ∧ ∀𝑣 ∈ ran (𝑢𝑣𝑣𝑢)) → Fun ran )
209207, 208syl 17 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑚 ∈ ω ∀𝑗𝑚 (𝑗) ⊆ (𝑚)) → Fun ran )
210133, 209syldan 486 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → Fun ran )
211 vex 3176 . . . . . . . . 9 𝑚 ∈ V
212211eldm2 5244 . . . . . . . 8 (𝑚 ∈ dom ran ↔ ∃𝑢𝑚, 𝑢⟩ ∈ ran )
213 eluni2 4376 . . . . . . . . . 10 (⟨𝑚, 𝑢⟩ ∈ ran ↔ ∃𝑣 ∈ ran 𝑚, 𝑢⟩ ∈ 𝑣)
214211, 142opeldm 5250 . . . . . . . . . . . . . . 15 (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ dom 𝑣)
215214a1i 11 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ dom 𝑣))
216134, 44syl6ss 3580 . . . . . . . . . . . . . . 15 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)})
217 ssel 3562 . . . . . . . . . . . . . . . 16 (ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → (𝑣 ∈ ran 𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}))
218 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑣 ∈ V
219 dmeq 5246 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑣 → dom 𝑠 = dom 𝑣)
220219eleq2d 2673 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑣 → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom 𝑣))
221219eleq1d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑣 → (dom 𝑠 ∈ ω ↔ dom 𝑣 ∈ ω))
222220, 221anbi12d 743 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑣 → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω)))
223218, 222elab 3319 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω))
224223simprbi 479 . . . . . . . . . . . . . . . 16 (𝑣 ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → dom 𝑣 ∈ ω)
225217, 224syl6 34 . . . . . . . . . . . . . . 15 (ran ⊆ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} → (𝑣 ∈ ran → dom 𝑣 ∈ ω))
226216, 225syl 17 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → (𝑣 ∈ ran → dom 𝑣 ∈ ω))
227215, 226anim12d 584 . . . . . . . . . . . . 13 (:ω⟶𝑆 → ((⟨𝑚, 𝑢⟩ ∈ 𝑣𝑣 ∈ ran ) → (𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω)))
228 elnn 6967 . . . . . . . . . . . . 13 ((𝑚 ∈ dom 𝑣 ∧ dom 𝑣 ∈ ω) → 𝑚 ∈ ω)
229227, 228syl6 34 . . . . . . . . . . . 12 (:ω⟶𝑆 → ((⟨𝑚, 𝑢⟩ ∈ 𝑣𝑣 ∈ ran ) → 𝑚 ∈ ω))
230229expcomd 453 . . . . . . . . . . 11 (:ω⟶𝑆 → (𝑣 ∈ ran → (⟨𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ ω)))
231230rexlimdv 3012 . . . . . . . . . 10 (:ω⟶𝑆 → (∃𝑣 ∈ ran 𝑚, 𝑢⟩ ∈ 𝑣𝑚 ∈ ω))
232213, 231syl5bi 231 . . . . . . . . 9 (:ω⟶𝑆 → (⟨𝑚, 𝑢⟩ ∈ ran 𝑚 ∈ ω))
233232exlimdv 1848 . . . . . . . 8 (:ω⟶𝑆 → (∃𝑢𝑚, 𝑢⟩ ∈ ran 𝑚 ∈ ω))
234212, 233syl5bi 231 . . . . . . 7 (:ω⟶𝑆 → (𝑚 ∈ dom ran 𝑚 ∈ ω))
235234adantr 480 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom ran 𝑚 ∈ ω))
236 id 22 . . . . . . . . . . 11 (𝑚 ∈ ω → 𝑚 ∈ ω)
237 fnfvelrn 6264 . . . . . . . . . . 11 (( Fn ω ∧ 𝑚 ∈ ω) → (𝑚) ∈ ran )
238147, 236, 237syl2anr 494 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ :ω⟶𝑆) → (𝑚) ∈ ran )
239238adantrr 749 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → (𝑚) ∈ ran )
240129simpld 474 . . . . . . . . 9 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 ∈ dom (𝑚))
241 dmeq 5246 . . . . . . . . . 10 (𝑢 = (𝑚) → dom 𝑢 = dom (𝑚))
242241eliuni 4462 . . . . . . . . 9 (((𝑚) ∈ ran 𝑚 ∈ dom (𝑚)) → 𝑚 𝑢 ∈ ran dom 𝑢)
243239, 240, 242syl2anc 691 . . . . . . . 8 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 𝑢 ∈ ran dom 𝑢)
244 dmuni 5256 . . . . . . . 8 dom ran = 𝑢 ∈ ran dom 𝑢
245243, 244syl6eleqr 2699 . . . . . . 7 ((𝑚 ∈ ω ∧ (:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))) → 𝑚 ∈ dom ran )
246245expcom 450 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → 𝑚 ∈ dom ran ))
247235, 246impbid 201 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ dom ran 𝑚 ∈ ω))
248247eqrdv 2608 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → dom ran = ω)
249 rnuni 5463 . . . . . 6 ran ran = 𝑠 ∈ ran ran 𝑠
250 frn 5966 . . . . . . . . . . . . . 14 (𝑠:suc 𝑛𝐴 → ran 𝑠𝐴)
2512503ad2ant1 1075 . . . . . . . . . . . . 13 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → ran 𝑠𝐴)
252251rexlimivw 3011 . . . . . . . . . . . 12 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → ran 𝑠𝐴)
253252ss2abi 3637 . . . . . . . . . . 11 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ ran 𝑠𝐴}
25428, 253eqsstri 3598 . . . . . . . . . 10 𝑆 ⊆ {𝑠 ∣ ran 𝑠𝐴}
255134, 254syl6ss 3580 . . . . . . . . 9 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ ran 𝑠𝐴})
256 ssel 3562 . . . . . . . . . 10 (ran ⊆ {𝑠 ∣ ran 𝑠𝐴} → (𝑠 ∈ ran 𝑠 ∈ {𝑠 ∣ ran 𝑠𝐴}))
257 abid 2598 . . . . . . . . . 10 (𝑠 ∈ {𝑠 ∣ ran 𝑠𝐴} ↔ ran 𝑠𝐴)
258256, 257syl6ib 240 . . . . . . . . 9 (ran ⊆ {𝑠 ∣ ran 𝑠𝐴} → (𝑠 ∈ ran → ran 𝑠𝐴))
259255, 258syl 17 . . . . . . . 8 (:ω⟶𝑆 → (𝑠 ∈ ran → ran 𝑠𝐴))
260259ralrimiv 2948 . . . . . . 7 (:ω⟶𝑆 → ∀𝑠 ∈ ran ran 𝑠𝐴)
261 iunss 4497 . . . . . . 7 ( 𝑠 ∈ ran ran 𝑠𝐴 ↔ ∀𝑠 ∈ ran ran 𝑠𝐴)
262260, 261sylibr 223 . . . . . 6 (:ω⟶𝑆 𝑠 ∈ ran ran 𝑠𝐴)
263249, 262syl5eqss 3612 . . . . 5 (:ω⟶𝑆 → ran ran 𝐴)
264263adantr 480 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ran ran 𝐴)
265 df-fn 5807 . . . . 5 ( ran Fn ω ↔ (Fun ran ∧ dom ran = ω))
266 df-f 5808 . . . . . 6 ( ran :ω⟶𝐴 ↔ ( ran Fn ω ∧ ran ran 𝐴))
267266biimpri 217 . . . . 5 (( ran Fn ω ∧ ran ran 𝐴) → ran :ω⟶𝐴)
268265, 267sylanbr 489 . . . 4 (((Fun ran ∧ dom ran = ω) ∧ ran ran 𝐴) → ran :ω⟶𝐴)
269210, 248, 264, 268syl21anc 1317 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ran :ω⟶𝐴)
270 fnfvelrn 6264 . . . . . . . 8 (( Fn ω ∧ ∅ ∈ ω) → (‘∅) ∈ ran )
271147, 25, 270sylancl 693 . . . . . . 7 (:ω⟶𝑆 → (‘∅) ∈ ran )
272271adantr 480 . . . . . 6 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘∅) ∈ ran )
273 elssuni 4403 . . . . . 6 ((‘∅) ∈ ran → (‘∅) ⊆ ran )
274272, 273syl 17 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (‘∅) ⊆ ran )
27554adantr 480 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∅ ∈ dom (‘∅))
276 funssfv 6119 . . . . 5 ((Fun ran ∧ (‘∅) ⊆ ran ∧ ∅ ∈ dom (‘∅)) → ( ran ‘∅) = ((‘∅)‘∅))
277210, 274, 275, 276syl3anc 1318 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ( ran ‘∅) = ((‘∅)‘∅))
278 simp2 1055 . . . . . . . . . . 11 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑠‘∅) = 𝐶)
279278rexlimivw 3011 . . . . . . . . . 10 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑠‘∅) = 𝐶)
280279ss2abi 3637 . . . . . . . . 9 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶}
28128, 280eqsstri 3598 . . . . . . . 8 𝑆 ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶}
282134, 281syl6ss 3580 . . . . . . 7 (:ω⟶𝑆 → ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶})
283 ssel 3562 . . . . . . . 8 (ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶} → ((‘∅) ∈ ran → (‘∅) ∈ {𝑠 ∣ (𝑠‘∅) = 𝐶}))
284 fveq1 6102 . . . . . . . . . 10 (𝑠 = (‘∅) → (𝑠‘∅) = ((‘∅)‘∅))
285284eqeq1d 2612 . . . . . . . . 9 (𝑠 = (‘∅) → ((𝑠‘∅) = 𝐶 ↔ ((‘∅)‘∅) = 𝐶))
28646, 285elab 3319 . . . . . . . 8 ((‘∅) ∈ {𝑠 ∣ (𝑠‘∅) = 𝐶} ↔ ((‘∅)‘∅) = 𝐶)
287283, 286syl6ib 240 . . . . . . 7 (ran ⊆ {𝑠 ∣ (𝑠‘∅) = 𝐶} → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
288282, 287syl 17 . . . . . 6 (:ω⟶𝑆 → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
289288adantr 480 . . . . 5 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((‘∅) ∈ ran → ((‘∅)‘∅) = 𝐶))
290272, 289mpd 15 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ((‘∅)‘∅) = 𝐶)
291277, 290eqtrd 2644 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ( ran ‘∅) = 𝐶)
292 nfv 1830 . . . . 5 𝑘 :ω⟶𝑆
293 nfra1 2925 . . . . 5 𝑘𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))
294292, 293nfan 1816 . . . 4 𝑘(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘)))
295134ad2antrr 758 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ran 𝑆)
296 peano2 6978 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
297 fnfvelrn 6264 . . . . . . . . 9 (( Fn ω ∧ suc 𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
298147, 296, 297syl2an 493 . . . . . . . 8 ((:ω⟶𝑆𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
299298adantlr 747 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (‘suc 𝑘) ∈ ran )
300240expcom 450 . . . . . . . . 9 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑚 ∈ ω → 𝑚 ∈ dom (𝑚)))
301300ralrimiv 2948 . . . . . . . 8 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚))
302 id 22 . . . . . . . . . . 11 (𝑚 = suc 𝑘𝑚 = suc 𝑘)
303 fveq2 6103 . . . . . . . . . . . 12 (𝑚 = suc 𝑘 → (𝑚) = (‘suc 𝑘))
304303dmeqd 5248 . . . . . . . . . . 11 (𝑚 = suc 𝑘 → dom (𝑚) = dom (‘suc 𝑘))
305302, 304eleq12d 2682 . . . . . . . . . 10 (𝑚 = suc 𝑘 → (𝑚 ∈ dom (𝑚) ↔ suc 𝑘 ∈ dom (‘suc 𝑘)))
306305rspcv 3278 . . . . . . . . 9 (suc 𝑘 ∈ ω → (∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚) → suc 𝑘 ∈ dom (‘suc 𝑘)))
307296, 306syl 17 . . . . . . . 8 (𝑘 ∈ ω → (∀𝑚 ∈ ω 𝑚 ∈ dom (𝑚) → suc 𝑘 ∈ dom (‘suc 𝑘)))
308301, 307mpan9 485 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → suc 𝑘 ∈ dom (‘suc 𝑘))
309 eleq2 2677 . . . . . . . . . . . . . . . . . . . . 21 (dom 𝑠 = suc 𝑛 → (suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ suc 𝑛))
310309biimpa 500 . . . . . . . . . . . . . . . . . . . 20 ((dom 𝑠 = suc 𝑛 ∧ suc 𝑘 ∈ dom 𝑠) → suc 𝑘 ∈ suc 𝑛)
31129, 310sylan 487 . . . . . . . . . . . . . . . . . . 19 ((𝑠:suc 𝑛𝐴 ∧ suc 𝑘 ∈ dom 𝑠) → suc 𝑘 ∈ suc 𝑛)
312 ordsucelsuc 6914 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑛 → (𝑘𝑛 ↔ suc 𝑘 ∈ suc 𝑛))
31330, 312syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ω → (𝑘𝑛 ↔ suc 𝑘 ∈ suc 𝑛))
314313biimprd 237 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ω → (suc 𝑘 ∈ suc 𝑛𝑘𝑛))
315 rsp 2913 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑘𝑛 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
316314, 315syl9r 76 . . . . . . . . . . . . . . . . . . . 20 (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑛 ∈ ω → (suc 𝑘 ∈ suc 𝑛 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
317316com13 86 . . . . . . . . . . . . . . . . . . 19 (suc 𝑘 ∈ suc 𝑛 → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
318311, 317syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑠:suc 𝑛𝐴 ∧ suc 𝑘 ∈ dom 𝑠) → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
319318ex 449 . . . . . . . . . . . . . . . . 17 (𝑠:suc 𝑛𝐴 → (suc 𝑘 ∈ dom 𝑠 → (𝑛 ∈ ω → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))))
320319com24 93 . . . . . . . . . . . . . . . 16 (𝑠:suc 𝑛𝐴 → (∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))))
321320imp 444 . . . . . . . . . . . . . . 15 ((𝑠:suc 𝑛𝐴 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
3223213adant2 1073 . . . . . . . . . . . . . 14 ((𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (𝑛 ∈ ω → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))))
323322impcom 445 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))) → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
324323rexlimiva 3010 . . . . . . . . . . . 12 (∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) → (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))))
325324ss2abi 3637 . . . . . . . . . . 11 {𝑠 ∣ ∃𝑛 ∈ ω (𝑠:suc 𝑛𝐴 ∧ (𝑠‘∅) = 𝐶 ∧ ∀𝑘𝑛 (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
32628, 325eqsstri 3598 . . . . . . . . . 10 𝑆 ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}
327 sstr 3576 . . . . . . . . . 10 ((ran 𝑆𝑆 ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}) → ran ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
328326, 327mpan2 703 . . . . . . . . 9 (ran 𝑆 → ran ⊆ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))})
329328sseld 3567 . . . . . . . 8 (ran 𝑆 → ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ∈ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))}))
330 fvex 6113 . . . . . . . . 9 (‘suc 𝑘) ∈ V
331 dmeq 5246 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → dom 𝑠 = dom (‘suc 𝑘))
332331eleq2d 2673 . . . . . . . . . 10 (𝑠 = (‘suc 𝑘) → (suc 𝑘 ∈ dom 𝑠 ↔ suc 𝑘 ∈ dom (‘suc 𝑘)))
333 fveq1 6102 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → (𝑠‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
334 fveq1 6102 . . . . . . . . . . . 12 (𝑠 = (‘suc 𝑘) → (𝑠𝑘) = ((‘suc 𝑘)‘𝑘))
335334fveq2d 6107 . . . . . . . . . . 11 (𝑠 = (‘suc 𝑘) → (𝐹‘(𝑠𝑘)) = (𝐹‘((‘suc 𝑘)‘𝑘)))
336333, 335eleq12d 2682 . . . . . . . . . 10 (𝑠 = (‘suc 𝑘) → ((𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
337332, 336imbi12d 333 . . . . . . . . 9 (𝑠 = (‘suc 𝑘) → ((suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘))) ↔ (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))))
338330, 337elab 3319 . . . . . . . 8 ((‘suc 𝑘) ∈ {𝑠 ∣ (suc 𝑘 ∈ dom 𝑠 → (𝑠‘suc 𝑘) ∈ (𝐹‘(𝑠𝑘)))} ↔ (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
339329, 338syl6ib 240 . . . . . . 7 (ran 𝑆 → ((‘suc 𝑘) ∈ ran → (suc 𝑘 ∈ dom (‘suc 𝑘) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))))
340295, 299, 308, 339syl3c 64 . . . . . 6 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘)))
341210adantr 480 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → Fun ran )
342 elssuni 4403 . . . . . . . . . 10 ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ⊆ ran )
343298, 342syl 17 . . . . . . . . 9 ((:ω⟶𝑆𝑘 ∈ ω) → (‘suc 𝑘) ⊆ ran )
344343adantlr 747 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (‘suc 𝑘) ⊆ ran )
345 funssfv 6119 . . . . . . . 8 ((Fun ran ∧ (‘suc 𝑘) ⊆ ran ∧ suc 𝑘 ∈ dom (‘suc 𝑘)) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
346341, 344, 308, 345syl3anc 1318 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
347216sseld 3567 . . . . . . . . . . . . . . 15 (:ω⟶𝑆 → ((‘suc 𝑘) ∈ ran → (‘suc 𝑘) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)}))
348331eleq2d 2673 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘suc 𝑘) → (∅ ∈ dom 𝑠 ↔ ∅ ∈ dom (‘suc 𝑘)))
349331eleq1d 2672 . . . . . . . . . . . . . . . . 17 (𝑠 = (‘suc 𝑘) → (dom 𝑠 ∈ ω ↔ dom (‘suc 𝑘) ∈ ω))
350348, 349anbi12d 743 . . . . . . . . . . . . . . . 16 (𝑠 = (‘suc 𝑘) → ((∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω) ↔ (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
351330, 350elab 3319 . . . . . . . . . . . . . . 15 ((‘suc 𝑘) ∈ {𝑠 ∣ (∅ ∈ dom 𝑠 ∧ dom 𝑠 ∈ ω)} ↔ (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω))
352347, 351syl6ib 240 . . . . . . . . . . . . . 14 (:ω⟶𝑆 → ((‘suc 𝑘) ∈ ran → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
353352adantr 480 . . . . . . . . . . . . 13 ((:ω⟶𝑆𝑘 ∈ ω) → ((‘suc 𝑘) ∈ ran → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω)))
354298, 353mpd 15 . . . . . . . . . . . 12 ((:ω⟶𝑆𝑘 ∈ ω) → (∅ ∈ dom (‘suc 𝑘) ∧ dom (‘suc 𝑘) ∈ ω))
355354simprd 478 . . . . . . . . . . 11 ((:ω⟶𝑆𝑘 ∈ ω) → dom (‘suc 𝑘) ∈ ω)
356 nnord 6965 . . . . . . . . . . 11 (dom (‘suc 𝑘) ∈ ω → Ord dom (‘suc 𝑘))
357 ordtr 5654 . . . . . . . . . . 11 (Ord dom (‘suc 𝑘) → Tr dom (‘suc 𝑘))
358 trsuc 5727 . . . . . . . . . . . 12 ((Tr dom (‘suc 𝑘) ∧ suc 𝑘 ∈ dom (‘suc 𝑘)) → 𝑘 ∈ dom (‘suc 𝑘))
359358ex 449 . . . . . . . . . . 11 (Tr dom (‘suc 𝑘) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
360355, 356, 357, 3594syl 19 . . . . . . . . . 10 ((:ω⟶𝑆𝑘 ∈ ω) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
361360adantlr 747 . . . . . . . . 9 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (suc 𝑘 ∈ dom (‘suc 𝑘) → 𝑘 ∈ dom (‘suc 𝑘)))
362308, 361mpd 15 . . . . . . . 8 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → 𝑘 ∈ dom (‘suc 𝑘))
363 funssfv 6119 . . . . . . . 8 ((Fun ran ∧ (‘suc 𝑘) ⊆ ran 𝑘 ∈ dom (‘suc 𝑘)) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
364341, 344, 362, 363syl3anc 1318 . . . . . . 7 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
365 simpl 472 . . . . . . . 8 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → ( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘))
366 simpr 476 . . . . . . . . 9 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → ( ran 𝑘) = ((‘suc 𝑘)‘𝑘))
367366fveq2d 6107 . . . . . . . 8 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → (𝐹‘( ran 𝑘)) = (𝐹‘((‘suc 𝑘)‘𝑘)))
368365, 367eleq12d 2682 . . . . . . 7 ((( ran ‘suc 𝑘) = ((‘suc 𝑘)‘suc 𝑘) ∧ ( ran 𝑘) = ((‘suc 𝑘)‘𝑘)) → (( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
369346, 364, 368syl2anc 691 . . . . . 6 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → (( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)) ↔ ((‘suc 𝑘)‘suc 𝑘) ∈ (𝐹‘((‘suc 𝑘)‘𝑘))))
370340, 369mpbird 246 . . . . 5 (((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) ∧ 𝑘 ∈ ω) → ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))
371370ex 449 . . . 4 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → (𝑘 ∈ ω → ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
372294, 371ralrimi 2940 . . 3 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))
373 vex 3176 . . . . . 6 ∈ V
374373rnex 6992 . . . . 5 ran ∈ V
375374uniex 6851 . . . 4 ran ∈ V
376 feq1 5939 . . . . 5 (𝑔 = ran → (𝑔:ω⟶𝐴 ran :ω⟶𝐴))
377 fveq1 6102 . . . . . 6 (𝑔 = ran → (𝑔‘∅) = ( ran ‘∅))
378377eqeq1d 2612 . . . . 5 (𝑔 = ran → ((𝑔‘∅) = 𝐶 ↔ ( ran ‘∅) = 𝐶))
379 fveq1 6102 . . . . . . 7 (𝑔 = ran → (𝑔‘suc 𝑘) = ( ran ‘suc 𝑘))
380 fveq1 6102 . . . . . . . 8 (𝑔 = ran → (𝑔𝑘) = ( ran 𝑘))
381380fveq2d 6107 . . . . . . 7 (𝑔 = ran → (𝐹‘(𝑔𝑘)) = (𝐹‘( ran 𝑘)))
382379, 381eleq12d 2682 . . . . . 6 (𝑔 = ran → ((𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
383382ralbidv 2969 . . . . 5 (𝑔 = ran → (∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘)) ↔ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))))
384376, 378, 3833anbi123d 1391 . . . 4 (𝑔 = ran → ((𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))) ↔ ( ran :ω⟶𝐴 ∧ ( ran ‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘)))))
385375, 384spcev 3273 . . 3 (( ran :ω⟶𝐴 ∧ ( ran ‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω ( ran ‘suc 𝑘) ∈ (𝐹‘( ran 𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
386269, 291, 372, 385syl3anc 1318 . 2 ((:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
387386exlimiv 1845 1 (∃(:ω⟶𝑆 ∧ ∀𝑘 ∈ ω (‘suc 𝑘) ∈ (𝐺‘(𝑘))) → ∃𝑔(𝑔:ω⟶𝐴 ∧ (𝑔‘∅) = 𝐶 ∧ ∀𝑘 ∈ ω (𝑔‘suc 𝑘) ∈ (𝐹‘(𝑔𝑘))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∨ w3o 1030   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ⟨cop 4131  ∪ cuni 4372  ∪ ciun 4455   ↦ cmpt 4643  Tr wtr 4680  dom cdm 5038  ran crn 5039   ↾ cres 5040  Ord word 5639  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  ωcom 6957 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-dc 9151 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-om 6958  df-1o 7447 This theorem is referenced by:  axdc3lem4  9158
 Copyright terms: Public domain W3C validator