MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16gALT Structured version   Visualization version   GIF version

Theorem axc16gALT 2355
Description: Alternate proof of axc16g 2119 that uses df-sb 1868 and requires ax-10 2006, ax-11 2021, ax-13 2234. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc16gALT (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem axc16gALT
StepHypRef Expression
1 aev 1970 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥)
2 axc16ALT 2354 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
3 biidd 251 . . . 4 (∀𝑧 𝑧 = 𝑥 → (𝜑𝜑))
43dral1 2313 . . 3 (∀𝑧 𝑧 = 𝑥 → (∀𝑧𝜑 ↔ ∀𝑥𝜑))
54biimprd 237 . 2 (∀𝑧 𝑧 = 𝑥 → (∀𝑥𝜑 → ∀𝑧𝜑))
61, 2, 5sylsyld 59 1 (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator