Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axc16ALT | Structured version Visualization version GIF version |
Description: Alternate proof of axc16 2120, shorter but requiring ax-10 2006, ax-11 2021, ax-13 2234 and using df-nf 1701 and df-sb 1868. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc16ALT | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2097 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
2 | ax-5 1827 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) | |
3 | 2 | hbsb3 2352 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑥[𝑧 / 𝑥]𝜑) |
4 | 1, 3 | axc16i 2310 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 |
This theorem is referenced by: axc16gALT 2355 |
Copyright terms: Public domain | W3C validator |