MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax13dgen4OLD Structured version   Visualization version   GIF version

Theorem ax13dgen4OLD 2005
Description: Obsolete proof of ax13dgen4 2004 as of 10-Oct-2021. (Contributed by NM, 13-Apr-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax13dgen4OLD 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))

Proof of Theorem ax13dgen4OLD
StepHypRef Expression
1 ax13dgen1 2001 1 𝑥 = 𝑥 → (𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922
This theorem depends on definitions:  df-bi 196  df-ex 1696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator