Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-bgbltosilva Structured version   Visualization version   GIF version

Axiom ax-bgbltosilva 40226
 Description: The binary Goldbach conjecture is valid for all even numbers less than or equal to 4x10^18, see result of [OeSilva] p. ?. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
ax-bgbltosilva ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 ≤ (4 · (10↑18))) → 𝑁 ∈ GoldbachEven )

Detailed syntax breakdown of Axiom ax-bgbltosilva
StepHypRef Expression
1 cN . . . 4 class 𝑁
2 ceven 40075 . . . 4 class Even
31, 2wcel 1977 . . 3 wff 𝑁 ∈ Even
4 c4 10949 . . . 4 class 4
5 clt 9953 . . . 4 class <
64, 1, 5wbr 4583 . . 3 wff 4 < 𝑁
7 c1 9816 . . . . . . 7 class 1
8 cc0 9815 . . . . . . 7 class 0
97, 8cdc 11369 . . . . . 6 class 10
10 c8 10953 . . . . . . 7 class 8
117, 10cdc 11369 . . . . . 6 class 18
12 cexp 12722 . . . . . 6 class
139, 11, 12co 6549 . . . . 5 class (10↑18)
14 cmul 9820 . . . . 5 class ·
154, 13, 14co 6549 . . . 4 class (4 · (10↑18))
16 cle 9954 . . . 4 class
171, 15, 16wbr 4583 . . 3 wff 𝑁 ≤ (4 · (10↑18))
183, 6, 17w3a 1031 . 2 wff (𝑁 ∈ Even ∧ 4 < 𝑁𝑁 ≤ (4 · (10↑18)))
19 cgbe 40167 . . 3 class GoldbachEven
201, 19wcel 1977 . 2 wff 𝑁 ∈ GoldbachEven
2118, 20wi 4 1 wff ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 ≤ (4 · (10↑18))) → 𝑁 ∈ GoldbachEven )
 Colors of variables: wff setvar class This axiom is referenced by:  bgoldbachlt  40227  tgblthelfgott  40229
 Copyright terms: Public domain W3C validator