Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlkovg Structured version   Visualization version   GIF version

Theorem av-numclwwlkovg 41518
 Description: Value of operation 𝐶, mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v" according to definition 6 in [Huneke] p. 2. (Contributed by Alexander van der Vekens, 14-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypothesis
Ref Expression
av-numclwwlkovg.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
av-numclwwlkovg ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem av-numclwwlkovg
StepHypRef Expression
1 oveq1 6556 . . . 4 (𝑛 = 𝑁 → (𝑛 ClWWalkSN 𝐺) = (𝑁 ClWWalkSN 𝐺))
21adantl 481 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑛 ClWWalkSN 𝐺) = (𝑁 ClWWalkSN 𝐺))
3 eqeq2 2621 . . . 4 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
4 oveq1 6556 . . . . . 6 (𝑛 = 𝑁 → (𝑛 − 2) = (𝑁 − 2))
54fveq2d 6107 . . . . 5 (𝑛 = 𝑁 → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2)))
65eqeq1d 2612 . . . 4 (𝑛 = 𝑁 → ((𝑤‘(𝑛 − 2)) = (𝑤‘0) ↔ (𝑤‘(𝑁 − 2)) = (𝑤‘0)))
73, 6bi2anan9 913 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0)) ↔ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))))
82, 7rabeqbidv 3168 . 2 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))} = {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
9 av-numclwwlkovg.c . 2 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
10 ovex 6577 . . 3 (𝑁 ClWWalkSN 𝐺) ∈ V
1110rabex 4740 . 2 {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))} ∈ V
128, 9, 11ovmpt2a 6689 1 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘(𝑁 − 2)) = (𝑤‘0))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {crab 2900  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  0cc0 9815   − cmin 10145  2c2 10947  ℤ≥cuz 11563   ClWWalkSN cclwwlksn 41184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554 This theorem is referenced by:  av-numclwwlkovgel  41519  av-extwwlkfab  41520  av-numclwwlk3lem  41538
 Copyright terms: Public domain W3C validator