Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwwlk1 Structured version   Visualization version   GIF version

Theorem av-numclwwlk1 41528
 Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0, but only for finite graphs! (Contributed by Alexander van der Vekens, 26-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
av-extwwlkfab.v 𝑉 = (Vtx‘𝐺)
av-extwwlkfab.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
Assertion
Ref Expression
av-numclwwlk1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐶𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝐶
Allowed substitution hints:   𝐶(𝑣,𝑛)   𝐹(𝑣,𝑛)   𝐾(𝑤,𝑣,𝑛)

Proof of Theorem av-numclwwlk1
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . . 3 (𝑋𝐶𝑁) ∈ V
2 rusgrusgr 40764 . . . . 5 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph )
32ad2antlr 759 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ USGraph )
4 simprl 790 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑋𝑉)
5 simprr 792 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑁 ∈ (ℤ‘3))
6 av-extwwlkfab.v . . . . 5 𝑉 = (Vtx‘𝐺)
7 av-extwwlkfab.f . . . . 5 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
8 av-extwwlkfab.c . . . . 5 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
96, 7, 8av-numclwlk1lem2 41527 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
103, 4, 5, 9syl3anc 1318 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
11 hasheqf1oi 13002 . . 3 ((𝑋𝐶𝑁) ∈ V → (∃𝑓 𝑓:(𝑋𝐶𝑁)–1-1-onto→((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)) → (#‘(𝑋𝐶𝑁)) = (#‘((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))))
121, 10, 11mpsyl 66 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐶𝑁)) = (#‘((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))))
13 simpll 786 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ∈ Fin)
14 uz3m2nn 11607 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
1514adantl 481 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑁 − 2) ∈ ℕ)
1615adantl 481 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑁 − 2) ∈ ℕ)
177, 6av-numclwwlkffin 41512 . . . 4 ((𝑉 ∈ Fin ∧ 𝑋𝑉 ∧ (𝑁 − 2) ∈ ℕ) → (𝑋𝐹(𝑁 − 2)) ∈ Fin)
1813, 4, 16, 17syl3anc 1318 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝑋𝐹(𝑁 − 2)) ∈ Fin)
196finrusgrfusgr 40765 . . . . . . 7 ((𝐺 RegUSGraph 𝐾𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph )
2019ancoms 468 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FinUSGraph )
21 fusgrfis 40549 . . . . . 6 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
2220, 21syl 17 . . . . 5 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (Edg‘𝐺) ∈ Fin)
2322adantr 480 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (Edg‘𝐺) ∈ Fin)
24 eqid 2610 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
256, 24nbusgrfi 40602 . . . 4 ((𝐺 ∈ USGraph ∧ (Edg‘𝐺) ∈ Fin ∧ 𝑋𝑉) → (𝐺 NeighbVtx 𝑋) ∈ Fin)
263, 23, 4, 25syl3anc 1318 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (𝐺 NeighbVtx 𝑋) ∈ Fin)
27 hashxp 13081 . . 3 (((𝑋𝐹(𝑁 − 2)) ∈ Fin ∧ (𝐺 NeighbVtx 𝑋) ∈ Fin) → (#‘((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))) = ((#‘(𝑋𝐹(𝑁 − 2))) · (#‘(𝐺 NeighbVtx 𝑋))))
2818, 26, 27syl2anc 691 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))) = ((#‘(𝑋𝐹(𝑁 − 2))) · (#‘(𝐺 NeighbVtx 𝑋))))
296rusgrpropnb 40783 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥𝑉 (#‘(𝐺 NeighbVtx 𝑥)) = 𝐾))
30 oveq2 6557 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐺 NeighbVtx 𝑥) = (𝐺 NeighbVtx 𝑋))
3130fveq2d 6107 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (#‘(𝐺 NeighbVtx 𝑥)) = (#‘(𝐺 NeighbVtx 𝑋)))
3231eqeq1d 2612 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((#‘(𝐺 NeighbVtx 𝑥)) = 𝐾 ↔ (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3332rspccv 3279 . . . . . . . . . 10 (∀𝑥𝑉 (#‘(𝐺 NeighbVtx 𝑥)) = 𝐾 → (𝑋𝑉 → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
34333ad2ant3 1077 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑥𝑉 (#‘(𝐺 NeighbVtx 𝑥)) = 𝐾) → (𝑋𝑉 → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3529, 34syl 17 . . . . . . . 8 (𝐺 RegUSGraph 𝐾 → (𝑋𝑉 → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3635adantl 481 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (𝑋𝑉 → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3736com12 32 . . . . . 6 (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3837adantr 480 . . . . 5 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾))
3938impcom 445 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝐺 NeighbVtx 𝑋)) = 𝐾)
4039oveq2d 6565 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋𝐹(𝑁 − 2))) · (#‘(𝐺 NeighbVtx 𝑋))) = ((#‘(𝑋𝐹(𝑁 − 2))) · 𝐾))
41 hashcl 13009 . . . . 5 ((𝑋𝐹(𝑁 − 2)) ∈ Fin → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℕ0)
42 nn0cn 11179 . . . . 5 ((#‘(𝑋𝐹(𝑁 − 2))) ∈ ℕ0 → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
4318, 41, 423syl 18 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐹(𝑁 − 2))) ∈ ℂ)
4420adantr 480 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 ∈ FinUSGraph )
45 simplr 788 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐺 RegUSGraph 𝐾)
46 ne0i 3880 . . . . . . . 8 (𝑋𝑉𝑉 ≠ ∅)
4746adantr 480 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑉 ≠ ∅)
4847adantl 481 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝑉 ≠ ∅)
496frusgrnn0 40771 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
5044, 45, 48, 49syl3anc 1318 . . . . 5 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℕ0)
5150nn0cnd 11230 . . . 4 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → 𝐾 ∈ ℂ)
5243, 51mulcomd 9940 . . 3 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋𝐹(𝑁 − 2))) · 𝐾) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
5340, 52eqtrd 2644 . 2 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → ((#‘(𝑋𝐹(𝑁 − 2))) · (#‘(𝐺 NeighbVtx 𝑋))) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
5412, 28, 533eqtrd 2648 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (#‘(𝑋𝐶𝑁)) = (𝐾 · (#‘(𝑋𝐹(𝑁 − 2)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900  Vcvv 3173  ∅c0 3874   class class class wbr 4583   × cxp 5036  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  ℂcc 9813  0cc0 9815   · cmul 9820   − cmin 10145  ℕcn 10897  2c2 10947  3c3 10948  ℕ0cn0 11169  ℕ0*cxnn0 11240  ℤ≥cuz 11563  #chash 12979  Vtxcvtx 25673  Edgcedga 25792   USGraph cusgr 40379   FinUSGraph cfusgr 40535   NeighbVtx cnbgr 40550   RegUSGraph crusgr 40756   ClWWalkSN cclwwlksn 41184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-s2 13444  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-umgr 25750  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-fusgr 40536  df-nbgr 40554  df-vtxdg 40682  df-rgr 40757  df-rusgr 40758  df-clwwlks 41185  df-clwwlksn 41186 This theorem is referenced by:  av-numclwwlk3  41539
 Copyright terms: Public domain W3C validator