Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  av-numclwlk1lem2f Structured version   Visualization version   GIF version

Theorem av-numclwlk1lem2f 41522
 Description: 𝑇 is a function, mapping a closed walk having a fixed length and starting at a fixed vertex) with the last but 2 vertex is identical with the first (and therefore last) vertex to the pair of the shorter closed walk and its successor in the longer closed walk, which must be a neighbor of the first vertex. (Contributed by Alexander van der Vekens, 19-Sep-2018.) (Revised by AV, 29-May-2021.)
Hypotheses
Ref Expression
av-extwwlkfab.v 𝑉 = (Vtx‘𝐺)
av-extwwlkfab.f 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
av-extwwlkfab.c 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
av-numclwwlk.t 𝑇 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩)
Assertion
Ref Expression
av-numclwlk1lem2f ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑛,𝑋,𝑣,𝑤   𝑤,𝐹   𝑤,𝐶
Allowed substitution hints:   𝐶(𝑣,𝑛)   𝑇(𝑤,𝑣,𝑛)   𝐹(𝑣,𝑛)

Proof of Theorem av-numclwlk1lem2f
StepHypRef Expression
1 av-extwwlkfab.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
2 av-extwwlkfab.f . . . . . . 7 𝐹 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ (𝑤‘0) = 𝑣})
3 av-extwwlkfab.c . . . . . . 7 𝐶 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑛 ClWWalkSN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (𝑤‘(𝑛 − 2)) = (𝑤‘0))})
41, 2, 3av-extwwlkfab 41520 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑋𝐶𝑁) = {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)})
54eleq2d 2673 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑤 ∈ (𝑋𝐶𝑁) ↔ 𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)}))
6 rabid 3095 . . . . 5 (𝑤 ∈ {𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)} ↔ (𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)))
75, 6syl6bb 275 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑤 ∈ (𝑋𝐶𝑁) ↔ (𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))))
8 simprr1 1102 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))) → (𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)))
9 simprr2 1103 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))) → (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋))
108, 9opelxpd 5073 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ (𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋))) → ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩ ∈ ((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
1110ex 449 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑤 ∈ (𝑁 ClWWalkSN 𝐺) ∧ ((𝑤 substr ⟨0, (𝑁 − 2)⟩) ∈ (𝑋𝐹(𝑁 − 2)) ∧ (𝑤‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx 𝑋) ∧ (𝑤‘(𝑁 − 2)) = 𝑋)) → ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩ ∈ ((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))))
127, 11sylbid 229 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → (𝑤 ∈ (𝑋𝐶𝑁) → ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩ ∈ ((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋))))
1312imp 444 . 2 (((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) ∧ 𝑤 ∈ (𝑋𝐶𝑁)) → ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩ ∈ ((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
14 av-numclwwlk.t . 2 𝑇 = (𝑤 ∈ (𝑋𝐶𝑁) ↦ ⟨(𝑤 substr ⟨0, (𝑁 − 2)⟩), (𝑤‘(𝑁 − 1))⟩)
1513, 14fmptd 6292 1 ((𝐺 ∈ USGraph ∧ 𝑋𝑉𝑁 ∈ (ℤ‘3)) → 𝑇:(𝑋𝐶𝑁)⟶((𝑋𝐹(𝑁 − 2)) × (𝐺 NeighbVtx 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900  ⟨cop 4131   ↦ cmpt 4643   × cxp 5036  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  0cc0 9815  1c1 9816   − cmin 10145  ℕcn 10897  2c2 10947  3c3 10948  ℤ≥cuz 11563   substr csubstr 13150  Vtxcvtx 25673   USGraph cusgr 40379   NeighbVtx cnbgr 40550   ClWWalkSN cclwwlksn 41184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-lsw 13155  df-substr 13158  df-upgr 25749  df-umgr 25750  df-edga 25793  df-usgr 40381  df-nbgr 40554  df-clwwlks 41185  df-clwwlksn 41186 This theorem is referenced by:  av-numclwlk1lem2f1  41524  av-numclwlk1lem2fo  41525
 Copyright terms: Public domain W3C validator