Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atss | Structured version Visualization version GIF version |
Description: A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atss | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elat2 28583 | . 2 ⊢ (𝐵 ∈ HAtoms ↔ (𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))))) | |
2 | sseq1 3589 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | eqeq1 2614 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
4 | eqeq1 2614 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 = 0ℋ ↔ 𝐴 = 0ℋ)) | |
5 | 3, 4 | orbi12d 742 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 ∨ 𝑥 = 0ℋ) ↔ (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
6 | 2, 5 | imbi12d 333 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
7 | 6 | rspcv 3278 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
8 | 7 | adantld 482 | . . . 4 ⊢ (𝐴 ∈ Cℋ → ((𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
9 | 8 | adantld 482 | . . 3 ⊢ (𝐴 ∈ Cℋ → ((𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ)))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ)))) |
10 | 9 | imp 444 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐵 ∈ Cℋ ∧ (𝐵 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → (𝑥 = 𝐵 ∨ 𝑥 = 0ℋ))))) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
11 | 1, 10 | sylan2b 491 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ⊆ wss 3540 Cℋ cch 27170 0ℋc0h 27176 HAtomscat 27206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 ax-hilex 27240 ax-hfvadd 27241 ax-hvcom 27242 ax-hvass 27243 ax-hv0cl 27244 ax-hvaddid 27245 ax-hfvmul 27246 ax-hvmulid 27247 ax-hvmulass 27248 ax-hvdistr1 27249 ax-hvdistr2 27250 ax-hvmul0 27251 ax-hfi 27320 ax-his1 27323 ax-his2 27324 ax-his3 27325 ax-his4 27326 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-icc 12053 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-lm 20843 df-haus 20929 df-grpo 26731 df-gid 26732 df-ginv 26733 df-gdiv 26734 df-ablo 26783 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-vs 26838 df-nmcv 26839 df-ims 26840 df-hnorm 27209 df-hvsub 27212 df-hlim 27213 df-sh 27448 df-ch 27462 df-ch0 27494 df-cv 28522 df-at 28581 |
This theorem is referenced by: atsseq 28590 |
Copyright terms: Public domain | W3C validator |