Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atncvrN | Structured version Visualization version GIF version |
Description: Two atoms cannot satisfy the covering relation. (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atncvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atncvr.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atncvrN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
2 | atncvr.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atn0 33613 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
4 | 3 | 3adant3 1074 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≠ (0.‘𝐾)) |
5 | eqid 2610 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 5, 2 | atbase 33594 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
7 | eqid 2610 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
8 | atncvr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
9 | 5, 7, 1, 8, 2 | atcvreq0 33619 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
10 | 6, 9 | syl3an2 1352 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶𝑄 ↔ 𝑃 = (0.‘𝐾))) |
11 | 10 | necon3bbid 2819 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑃𝐶𝑄 ↔ 𝑃 ≠ (0.‘𝐾))) |
12 | 4, 11 | mpbird 246 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑃𝐶𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 class class class wbr 4583 ‘cfv 5804 Basecbs 15695 lecple 15775 0.cp0 16860 ⋖ ccvr 33567 Atomscatm 33568 AtLatcal 33569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-preset 16751 df-poset 16769 df-plt 16781 df-glb 16798 df-p0 16862 df-lat 16869 df-covers 33571 df-ats 33572 df-atl 33603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |