Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atltcvr Structured version   Visualization version   GIF version

Theorem atltcvr 33739
 Description: An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atltcvr.s < = (lt‘𝐾)
atltcvr.j = (join‘𝐾)
atltcvr.a 𝐴 = (Atoms‘𝐾)
atltcvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
atltcvr ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))

Proof of Theorem atltcvr
StepHypRef Expression
1 oveq1 6556 . . . . . 6 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
2 simpr3 1062 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
3 atltcvr.j . . . . . . . 8 = (join‘𝐾)
4 atltcvr.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4hlatjidm 33673 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
62, 5syldan 486 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑅) = 𝑅)
71, 6sylan9eqr 2666 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 𝑅) = 𝑅)
87breq2d 4595 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 𝑅) ↔ 𝑃 < 𝑅))
9 hlatl 33665 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
109adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ AtLat)
11 simpr1 1060 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
12 atltcvr.s . . . . . . . 8 < = (lt‘𝐾)
1312, 4atnlt 33618 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴) → ¬ 𝑃 < 𝑅)
1410, 11, 2, 13syl3anc 1318 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑃 < 𝑅)
1514pm2.21d 117 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < 𝑅𝑃𝐶(𝑄 𝑅)))
1615adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < 𝑅𝑃𝐶(𝑄 𝑅)))
178, 16sylbid 229 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
18 simpl 472 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ HL)
19 hllat 33668 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2019adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
21 simpr2 1061 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
22 eqid 2610 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2322, 4atbase 33594 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2421, 23syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
2522, 4atbase 33594 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
262, 25syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
2722, 3latjcl 16874 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
2820, 24, 26, 27syl3anc 1318 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
29 eqid 2610 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
3029, 12pltle 16784 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
3118, 11, 28, 30syl3anc 1318 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
3231adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
33 simpll 786 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → 𝐾 ∈ HL)
34 simplr 788 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
35 simpr 476 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅)))
3633, 34, 353jca 1235 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))))
3736anassrs 678 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) ∧ 𝑃(le‘𝐾)(𝑄 𝑅)) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))))
38 atltcvr.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
3929, 3, 38, 4atcvrj2 33737 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
4037, 39syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) ∧ 𝑃(le‘𝐾)(𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅))
4140ex 449 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃(le‘𝐾)(𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4232, 41syld 46 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4317, 42pm2.61dane 2869 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4422, 4atbase 33594 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4511, 44syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
4622, 12, 38cvrlt 33575 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 < (𝑄 𝑅))
4746ex 449 . . 3 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃𝐶(𝑄 𝑅) → 𝑃 < (𝑄 𝑅)))
4818, 45, 28, 47syl3anc 1318 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝐶(𝑄 𝑅) → 𝑃 < (𝑄 𝑅)))
4943, 48impbid 201 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  ltcplt 16764  joincjn 16767  Latclat 16868   ⋖ ccvr 33567  Atomscatm 33568  AtLatcal 33569  HLchlt 33655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656 This theorem is referenced by:  atlt  33741  2atlt  33743  atexchltN  33745
 Copyright terms: Public domain W3C validator