Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlen0 Structured version   Visualization version   GIF version

Theorem atlen0 33615
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
atlen0.b 𝐵 = (Base‘𝐾)
atlen0.l = (le‘𝐾)
atlen0.z 0 = (0.‘𝐾)
atlen0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlen0 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋0 )

Proof of Theorem atlen0
StepHypRef Expression
1 simpl1 1057 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝐾 ∈ AtLat)
2 atlen0.b . . . . . 6 𝐵 = (Base‘𝐾)
3 atlen0.z . . . . . 6 0 = (0.‘𝐾)
42, 3atl0cl 33608 . . . . 5 (𝐾 ∈ AtLat → 0𝐵)
51, 4syl 17 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0𝐵)
6 simpl2 1058 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋𝐵)
71, 5, 63jca 1235 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → (𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵))
8 simpl3 1059 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃𝐴)
9 atlen0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
102, 9atbase 33594 . . . . . 6 (𝑃𝐴𝑃𝐵)
118, 10syl 17 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃𝐵)
12 eqid 2610 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
133, 12, 9atcvr0 33593 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
141, 8, 13syl2anc 691 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 ( ⋖ ‘𝐾)𝑃)
15 eqid 2610 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
162, 15, 12cvrlt 33575 . . . . 5 (((𝐾 ∈ AtLat ∧ 0𝐵𝑃𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 (lt‘𝐾)𝑃)
171, 5, 11, 14, 16syl31anc 1321 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 (lt‘𝐾)𝑃)
18 simpr 476 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃 𝑋)
19 atlpos 33606 . . . . . 6 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
201, 19syl 17 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝐾 ∈ Poset)
21 atlen0.l . . . . . 6 = (le‘𝐾)
222, 21, 15pltletr 16794 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵)) → (( 0 (lt‘𝐾)𝑃𝑃 𝑋) → 0 (lt‘𝐾)𝑋))
2320, 5, 11, 6, 22syl13anc 1320 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → (( 0 (lt‘𝐾)𝑃𝑃 𝑋) → 0 (lt‘𝐾)𝑋))
2417, 18, 23mp2and 711 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 (lt‘𝐾)𝑋)
2515pltne 16785 . . 3 ((𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵) → ( 0 (lt‘𝐾)𝑋0𝑋))
267, 24, 25sylc 63 . 2 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0𝑋)
2726necomd 2837 1 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  ltcplt 16764  0.cp0 16860  ccvr 33567  Atomscatm 33568  AtLatcal 33569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-preset 16751  df-poset 16769  df-plt 16781  df-glb 16798  df-p0 16862  df-lat 16869  df-covers 33571  df-ats 33572  df-atl 33603
This theorem is referenced by:  ps-2b  33786  2atm  33831  2llnm4  33874  dalem21  33998  dalem54  34030  trlval3  34492  cdlemc5  34500
  Copyright terms: Public domain W3C validator