Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atle Structured version   Visualization version   GIF version

Theorem atle 33740
 Description: Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
atle.b 𝐵 = (Base‘𝐾)
atle.l = (le‘𝐾)
atle.z 0 = (0.‘𝐾)
atle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atle ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   0 ,𝑝

Proof of Theorem atle
StepHypRef Expression
1 simp1 1054 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝐾 ∈ HL)
2 hlop 33667 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
323ad2ant1 1075 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝐾 ∈ OP)
4 atle.b . . . . 5 𝐵 = (Base‘𝐾)
5 atle.z . . . . 5 0 = (0.‘𝐾)
64, 5op0cl 33489 . . . 4 (𝐾 ∈ OP → 0𝐵)
73, 6syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 0𝐵)
8 simp2 1055 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐵)
9 simp3 1056 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝑋0 )
10 eqid 2610 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
114, 10, 5opltn0 33495 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 0 (lt‘𝐾)𝑋𝑋0 ))
123, 8, 11syl2anc 691 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ( 0 (lt‘𝐾)𝑋𝑋0 ))
139, 12mpbird 246 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 0 (lt‘𝐾)𝑋)
14 atle.l . . . 4 = (le‘𝐾)
15 eqid 2610 . . . 4 (join‘𝐾) = (join‘𝐾)
16 atle.a . . . 4 𝐴 = (Atoms‘𝐾)
174, 14, 10, 15, 16hlrelat 33706 . . 3 (((𝐾 ∈ HL ∧ 0𝐵𝑋𝐵) ∧ 0 (lt‘𝐾)𝑋) → ∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋))
181, 7, 8, 13, 17syl31anc 1321 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋))
19 simpl1 1057 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
20 hlol 33666 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
2119, 20syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝐾 ∈ OL)
224, 16atbase 33594 . . . . . . . 8 (𝑝𝐴𝑝𝐵)
2322adantl 481 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → 𝑝𝐵)
244, 15, 5olj02 33531 . . . . . . 7 ((𝐾 ∈ OL ∧ 𝑝𝐵) → ( 0 (join‘𝐾)𝑝) = 𝑝)
2521, 23, 24syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → ( 0 (join‘𝐾)𝑝) = 𝑝)
2625breq1d 4593 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2726biimpd 218 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2827adantld 482 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴) → (( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋) → 𝑝 𝑋))
2928reximdva 3000 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → (∃𝑝𝐴 ( 0 (lt‘𝐾)( 0 (join‘𝐾)𝑝) ∧ ( 0 (join‘𝐾)𝑝) 𝑋) → ∃𝑝𝐴 𝑝 𝑋))
3018, 29mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃𝑝𝐴 𝑝 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  ltcplt 16764  joincjn 16767  0.cp0 16860  OPcops 33477  OLcol 33479  Atomscatm 33568  HLchlt 33655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656 This theorem is referenced by:  1cvratex  33777  llnle  33822  lhpexle  34309
 Copyright terms: Public domain W3C validator