Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0le Structured version   Visualization version   GIF version

Theorem atl0le 33609
 Description: Orthoposet zero is less than or equal to any element. (ch0le 27684 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
atl0le.b 𝐵 = (Base‘𝐾)
atl0le.l = (le‘𝐾)
atl0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atl0le ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 𝑋)

Proof of Theorem atl0le
StepHypRef Expression
1 atl0le.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2610 . 2 (glb‘𝐾) = (glb‘𝐾)
3 atl0le.l . 2 = (le‘𝐾)
4 atl0le.z . 2 0 = (0.‘𝐾)
5 simpl 472 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
6 simpr 476 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2610 . . . 4 (lub‘𝐾) = (lub‘𝐾)
81, 7, 2atl0dm 33607 . . 3 (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾))
98adantr 480 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐵 ∈ dom (glb‘𝐾))
101, 2, 3, 4, 5, 6, 9p0le 16866 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  dom cdm 5038  ‘cfv 5804  Basecbs 15695  lecple 15775  lubclub 16765  glbcglb 16766  0.cp0 16860  AtLatcal 33569 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-glb 16798  df-p0 16862  df-atl 33603 This theorem is referenced by:  atlle0  33610  atlltn0  33611  atcvreq0  33619  trlval4  34493  dian0  35346  dia0  35359  dihmeetlem4preN  35613
 Copyright terms: Public domain W3C validator