Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atcv0 | Structured version Visualization version GIF version |
Description: An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atcv0 | ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ela 28582 | . 2 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | |
2 | 1 | simprbi 479 | 1 ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 class class class wbr 4583 Cℋ cch 27170 0ℋc0h 27176 ⋖ℋ ccv 27205 HAtomscat 27206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-at 28581 |
This theorem is referenced by: atcveq0 28591 atcv0eq 28622 |
Copyright terms: Public domain | W3C validator |