MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclfval Structured version   Visualization version   GIF version

Theorem asclfval 19155
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.)
Hypotheses
Ref Expression
asclfval.a 𝐴 = (algSc‘𝑊)
asclfval.f 𝐹 = (Scalar‘𝑊)
asclfval.k 𝐾 = (Base‘𝐹)
asclfval.s · = ( ·𝑠𝑊)
asclfval.o 1 = (1r𝑊)
Assertion
Ref Expression
asclfval 𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
Distinct variable groups:   𝑥,𝐾   𝑥, 1   𝑥, ·   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem asclfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 asclfval.a . 2 𝐴 = (algSc‘𝑊)
2 fveq2 6103 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 asclfval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3syl6eqr 2662 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6107 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 asclfval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6syl6eqr 2662 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6103 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
9 asclfval.s . . . . . . 7 · = ( ·𝑠𝑊)
108, 9syl6eqr 2662 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
11 eqidd 2611 . . . . . 6 (𝑤 = 𝑊𝑥 = 𝑥)
12 fveq2 6103 . . . . . . 7 (𝑤 = 𝑊 → (1r𝑤) = (1r𝑊))
13 asclfval.o . . . . . . 7 1 = (1r𝑊)
1412, 13syl6eqr 2662 . . . . . 6 (𝑤 = 𝑊 → (1r𝑤) = 1 )
1510, 11, 14oveq123d 6570 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)(1r𝑤)) = (𝑥 · 1 ))
167, 15mpteq12dv 4663 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))) = (𝑥𝐾 ↦ (𝑥 · 1 )))
17 df-ascl 19135 . . . 4 algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))))
183fveq2i 6106 . . . . . . 7 (Base‘𝐹) = (Base‘(Scalar‘𝑊))
196, 18eqtri 2632 . . . . . 6 𝐾 = (Base‘(Scalar‘𝑊))
20 fvex 6113 . . . . . 6 (Base‘(Scalar‘𝑊)) ∈ V
2119, 20eqeltri 2684 . . . . 5 𝐾 ∈ V
2221mptex 6390 . . . 4 (𝑥𝐾 ↦ (𝑥 · 1 )) ∈ V
2316, 17, 22fvmpt 6191 . . 3 (𝑊 ∈ V → (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 )))
24 fvprc 6097 . . . . 5 𝑊 ∈ V → (algSc‘𝑊) = ∅)
25 mpt0 5934 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅
2624, 25syl6eqr 2662 . . . 4 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 )))
27 fvprc 6097 . . . . . . . . 9 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
283, 27syl5eq 2656 . . . . . . . 8 𝑊 ∈ V → 𝐹 = ∅)
2928fveq2d 6107 . . . . . . 7 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅))
30 base0 15740 . . . . . . 7 ∅ = (Base‘∅)
3129, 30syl6eqr 2662 . . . . . 6 𝑊 ∈ V → (Base‘𝐹) = ∅)
326, 31syl5eq 2656 . . . . 5 𝑊 ∈ V → 𝐾 = ∅)
3332mpteq1d 4666 . . . 4 𝑊 ∈ V → (𝑥𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 )))
3426, 33eqtr4d 2647 . . 3 𝑊 ∈ V → (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 )))
3523, 34pm2.61i 175 . 2 (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 ))
361, 35eqtri 2632 1 𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  cmpt 4643  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  1rcur 18324  algSccascl 19132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-slot 15699  df-base 15700  df-ascl 19135
This theorem is referenced by:  asclval  19156  asclfn  19157  asclf  19158  rnascl  19164  ressascl  19165  asclpropd  19167
  Copyright terms: Public domain W3C validator