Users' Mathboxes Mathbox for Jon Pennant < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  arearect Structured version   Visualization version   GIF version

Theorem arearect 36820
Description: The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ × ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.)
Hypotheses
Ref Expression
arearect.1 𝐴 ∈ ℝ
arearect.2 𝐵 ∈ ℝ
arearect.3 𝐶 ∈ ℝ
arearect.4 𝐷 ∈ ℝ
arearect.5 𝐴𝐵
arearect.6 𝐶𝐷
arearect.7 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
Assertion
Ref Expression
arearect (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))

Proof of Theorem arearect
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 arearect.7 . . . . 5 𝑆 = ((𝐴[,]𝐵) × (𝐶[,]𝐷))
2 arearect.1 . . . . . . 7 𝐴 ∈ ℝ
3 arearect.2 . . . . . . 7 𝐵 ∈ ℝ
4 iccssre 12126 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
52, 3, 4mp2an 704 . . . . . 6 (𝐴[,]𝐵) ⊆ ℝ
6 arearect.3 . . . . . . 7 𝐶 ∈ ℝ
7 arearect.4 . . . . . . 7 𝐷 ∈ ℝ
8 iccssre 12126 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ⊆ ℝ)
96, 7, 8mp2an 704 . . . . . 6 (𝐶[,]𝐷) ⊆ ℝ
10 xpss12 5148 . . . . . 6 (((𝐴[,]𝐵) ⊆ ℝ ∧ (𝐶[,]𝐷) ⊆ ℝ) → ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ))
115, 9, 10mp2an 704 . . . . 5 ((𝐴[,]𝐵) × (𝐶[,]𝐷)) ⊆ (ℝ × ℝ)
121, 11eqsstri 3598 . . . 4 𝑆 ⊆ (ℝ × ℝ)
13 iftrue 4042 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (𝐷𝐶))
141imaeq1i 5382 . . . . . . . . . . . . . . 15 (𝑆 “ {𝑥}) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
15 iftrue 4042 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (𝐶[,]𝐷))
16 xpimasn 5498 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = (𝐶[,]𝐷))
1715, 16eqtr4d 2647 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
18 iffalse 4045 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = ∅)
19 disjsn 4192 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴[,]𝐵))
20 xpima1 5496 . . . . . . . . . . . . . . . . . 18 (((𝐴[,]𝐵) ∩ {𝑥}) = ∅ → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2119, 20sylbir 224 . . . . . . . . . . . . . . . . 17 𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}) = ∅)
2218, 21eqtr4d 2647 . . . . . . . . . . . . . . . 16 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥}))
2317, 22pm2.61i 175 . . . . . . . . . . . . . . 15 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) = (((𝐴[,]𝐵) × (𝐶[,]𝐷)) “ {𝑥})
2414, 23eqtr4i 2635 . . . . . . . . . . . . . 14 (𝑆 “ {𝑥}) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)
2524fveq2i 6106 . . . . . . . . . . . . 13 (vol‘(𝑆 “ {𝑥})) = (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅))
2615fveq2d 6107 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘(𝐶[,]𝐷)))
2725, 26syl5eq 2656 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘(𝐶[,]𝐷)))
28 iccmbl 23141 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶[,]𝐷) ∈ dom vol)
296, 7, 28mp2an 704 . . . . . . . . . . . . . 14 (𝐶[,]𝐷) ∈ dom vol
30 mblvol 23105 . . . . . . . . . . . . . 14 ((𝐶[,]𝐷) ∈ dom vol → (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷)))
3129, 30ax-mp 5 . . . . . . . . . . . . 13 (vol‘(𝐶[,]𝐷)) = (vol*‘(𝐶[,]𝐷))
32 arearect.6 . . . . . . . . . . . . . 14 𝐶𝐷
33 ovolicc 23098 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶𝐷) → (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶))
346, 7, 32, 33mp3an 1416 . . . . . . . . . . . . 13 (vol*‘(𝐶[,]𝐷)) = (𝐷𝐶)
3531, 34eqtri 2632 . . . . . . . . . . . 12 (vol‘(𝐶[,]𝐷)) = (𝐷𝐶)
3627, 35syl6eq 2660 . . . . . . . . . . 11 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (𝐷𝐶))
3713, 36eqtr4d 2647 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
38 iffalse 4045 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = 0)
3918fveq2d 6107 . . . . . . . . . . . . 13 𝑥 ∈ (𝐴[,]𝐵) → (vol‘if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅)) = (vol‘∅))
4025, 39syl5eq 2656 . . . . . . . . . . . 12 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = (vol‘∅))
41 0mbl 23114 . . . . . . . . . . . . . 14 ∅ ∈ dom vol
42 mblvol 23105 . . . . . . . . . . . . . 14 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
4341, 42ax-mp 5 . . . . . . . . . . . . 13 (vol‘∅) = (vol*‘∅)
44 ovol0 23068 . . . . . . . . . . . . 13 (vol*‘∅) = 0
4543, 44eqtri 2632 . . . . . . . . . . . 12 (vol‘∅) = 0
4640, 45syl6eq 2660 . . . . . . . . . . 11 𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) = 0)
4738, 46eqtr4d 2647 . . . . . . . . . 10 𝑥 ∈ (𝐴[,]𝐵) → if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥})))
4837, 47pm2.61i 175 . . . . . . . . 9 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) = (vol‘(𝑆 “ {𝑥}))
4948eqcomi 2619 . . . . . . . 8 (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0)
5049a1i 11 . . . . . . 7 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0))
517, 6resubcli 10222 . . . . . . . 8 (𝐷𝐶) ∈ ℝ
52 0re 9919 . . . . . . . 8 0 ∈ ℝ
5351, 52keepel 4105 . . . . . . 7 if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) ∈ ℝ
5450, 53syl6eqel 2696 . . . . . 6 (𝑥 ∈ ℝ → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
55 volf 23104 . . . . . . . 8 vol:dom vol⟶(0[,]+∞)
56 ffun 5961 . . . . . . . 8 (vol:dom vol⟶(0[,]+∞) → Fun vol)
5755, 56ax-mp 5 . . . . . . 7 Fun vol
5829, 41keepel 4105 . . . . . . . 8 if(𝑥 ∈ (𝐴[,]𝐵), (𝐶[,]𝐷), ∅) ∈ dom vol
5924, 58eqeltri 2684 . . . . . . 7 (𝑆 “ {𝑥}) ∈ dom vol
60 fvimacnv 6240 . . . . . . 7 ((Fun vol ∧ (𝑆 “ {𝑥}) ∈ dom vol) → ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)))
6157, 59, 60mp2an 704 . . . . . 6 ((vol‘(𝑆 “ {𝑥})) ∈ ℝ ↔ (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6254, 61sylib 207 . . . . 5 (𝑥 ∈ ℝ → (𝑆 “ {𝑥}) ∈ (vol “ ℝ))
6362rgen 2906 . . . 4 𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ)
645a1i 11 . . . . . 6 (0 ∈ ℝ → (𝐴[,]𝐵) ⊆ ℝ)
65 rembl 23115 . . . . . . 7 ℝ ∈ dom vol
6665a1i 11 . . . . . 6 (0 ∈ ℝ → ℝ ∈ dom vol)
6736, 51syl6eqel 2696 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
6867adantl 481 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) ∈ ℝ)
69 eldifn 3695 . . . . . . . 8 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
7069, 46syl 17 . . . . . . 7 (𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)) → (vol‘(𝑆 “ {𝑥})) = 0)
7170adantl 481 . . . . . 6 ((0 ∈ ℝ ∧ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) → (vol‘(𝑆 “ {𝑥})) = 0)
7236mpteq2ia 4668 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶))
7351recni 9931 . . . . . . . . . 10 (𝐷𝐶) ∈ ℂ
74 ax-resscn 9872 . . . . . . . . . . 11 ℝ ⊆ ℂ
755, 74sstri 3577 . . . . . . . . . 10 (𝐴[,]𝐵) ⊆ ℂ
76 ssid 3587 . . . . . . . . . 10 ℂ ⊆ ℂ
77 cncfmptc 22522 . . . . . . . . . 10 (((𝐷𝐶) ∈ ℂ ∧ (𝐴[,]𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7873, 75, 76, 77mp3an 1416 . . . . . . . . 9 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)
79 cniccibl 23413 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1)
802, 3, 78, 79mp3an 1416 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐷𝐶)) ∈ 𝐿1
8172, 80eqeltri 2684 . . . . . . 7 (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
8281a1i 11 . . . . . 6 (0 ∈ ℝ → (𝑥 ∈ (𝐴[,]𝐵) ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8364, 66, 68, 71, 82iblss2 23378 . . . . 5 (0 ∈ ℝ → (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1)
8452, 83ax-mp 5 . . . 4 (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1
85 dmarea 24484 . . . 4 (𝑆 ∈ dom area ↔ (𝑆 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑆 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑆 “ {𝑥}))) ∈ 𝐿1))
8612, 63, 84, 85mpbir3an 1237 . . 3 𝑆 ∈ dom area
87 areaval 24491 . . 3 (𝑆 ∈ dom area → (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥)
8886, 87ax-mp 5 . 2 (area‘𝑆) = ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥
89 itgeq2 23350 . . . 4 (∀𝑥 ∈ ℝ (vol‘(𝑆 “ {𝑥})) = if(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) → ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
9089, 50mprg 2910 . . 3 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
91 iccmbl 23141 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol)
922, 3, 91mp2an 704 . . . . 5 (𝐴[,]𝐵) ∈ dom vol
93 mblvol 23105 . . . . . . . 8 ((𝐴[,]𝐵) ∈ dom vol → (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵)))
9492, 93ax-mp 5 . . . . . . 7 (vol‘(𝐴[,]𝐵)) = (vol*‘(𝐴[,]𝐵))
95 arearect.5 . . . . . . . 8 𝐴𝐵
96 ovolicc 23098 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴))
972, 3, 95, 96mp3an 1416 . . . . . . 7 (vol*‘(𝐴[,]𝐵)) = (𝐵𝐴)
9894, 97eqtri 2632 . . . . . 6 (vol‘(𝐴[,]𝐵)) = (𝐵𝐴)
993, 2resubcli 10222 . . . . . 6 (𝐵𝐴) ∈ ℝ
10098, 99eqeltri 2684 . . . . 5 (vol‘(𝐴[,]𝐵)) ∈ ℝ
101 itgconst 23391 . . . . 5 (((𝐴[,]𝐵) ∈ dom vol ∧ (vol‘(𝐴[,]𝐵)) ∈ ℝ ∧ (𝐷𝐶) ∈ ℂ) → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))))
10292, 100, 73, 101mp3an 1416 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ((𝐷𝐶) · (vol‘(𝐴[,]𝐵)))
103 itgss2 23385 . . . . 5 ((𝐴[,]𝐵) ⊆ ℝ → ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥)
1045, 103ax-mp 5 . . . 4 ∫(𝐴[,]𝐵)(𝐷𝐶) d𝑥 = ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥
10598oveq2i 6560 . . . 4 ((𝐷𝐶) · (vol‘(𝐴[,]𝐵))) = ((𝐷𝐶) · (𝐵𝐴))
106102, 104, 1053eqtr3i 2640 . . 3 ∫ℝif(𝑥 ∈ (𝐴[,]𝐵), (𝐷𝐶), 0) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10790, 106eqtri 2632 . 2 ∫ℝ(vol‘(𝑆 “ {𝑥})) d𝑥 = ((𝐷𝐶) · (𝐵𝐴))
10899recni 9931 . . 3 (𝐵𝐴) ∈ ℂ
10973, 108mulcomi 9925 . 2 ((𝐷𝐶) · (𝐵𝐴)) = ((𝐵𝐴) · (𝐷𝐶))
11088, 107, 1093eqtri 2636 1 (area‘𝑆) = ((𝐵𝐴) · (𝐷𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195   = wceq 1475  wcel 1977  wral 2896  cdif 3537  cin 3539  wss 3540  c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  ccnv 5037  dom cdm 5038  cima 5041  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   · cmul 9820  +∞cpnf 9950  cle 9954  cmin 10145  [,]cicc 12049  cnccncf 22487  vol*covol 23038  volcvol 23039  𝐿1cibl 23192  citg 23193  areacarea 24482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243  df-area 24483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator