MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  archnq Structured version   Visualization version   GIF version

Theorem archnq 9681
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
archnq (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnq
StepHypRef Expression
1 elpqn 9626 . . . 4 (𝐴Q𝐴 ∈ (N × N))
2 xp1st 7089 . . . 4 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
31, 2syl 17 . . 3 (𝐴Q → (1st𝐴) ∈ N)
4 1pi 9584 . . 3 1𝑜N
5 addclpi 9593 . . 3 (((1st𝐴) ∈ N ∧ 1𝑜N) → ((1st𝐴) +N 1𝑜) ∈ N)
63, 4, 5sylancl 693 . 2 (𝐴Q → ((1st𝐴) +N 1𝑜) ∈ N)
7 xp2nd 7090 . . . . . 6 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
81, 7syl 17 . . . . 5 (𝐴Q → (2nd𝐴) ∈ N)
9 mulclpi 9594 . . . . 5 ((((1st𝐴) +N 1𝑜) ∈ N ∧ (2nd𝐴) ∈ N) → (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N)
106, 8, 9syl2anc 691 . . . 4 (𝐴Q → (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N)
11 eqid 2610 . . . . . . 7 ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)
12 oveq2 6557 . . . . . . . . 9 (𝑥 = 1𝑜 → ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜))
1312eqeq1d 2612 . . . . . . . 8 (𝑥 = 1𝑜 → (((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜) ↔ ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)))
1413rspcev 3282 . . . . . . 7 ((1𝑜N ∧ ((1st𝐴) +N 1𝑜) = ((1st𝐴) +N 1𝑜)) → ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜))
154, 11, 14mp2an 704 . . . . . 6 𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜)
16 ltexpi 9603 . . . . . 6 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1𝑜) ∈ N) → ((1st𝐴) <N ((1st𝐴) +N 1𝑜) ↔ ∃𝑥N ((1st𝐴) +N 𝑥) = ((1st𝐴) +N 1𝑜)))
1715, 16mpbiri 247 . . . . 5 (((1st𝐴) ∈ N ∧ ((1st𝐴) +N 1𝑜) ∈ N) → (1st𝐴) <N ((1st𝐴) +N 1𝑜))
183, 6, 17syl2anc 691 . . . 4 (𝐴Q → (1st𝐴) <N ((1st𝐴) +N 1𝑜))
19 nlt1pi 9607 . . . . 5 ¬ (2nd𝐴) <N 1𝑜
20 ltmpi 9605 . . . . . . 7 (((1st𝐴) +N 1𝑜) ∈ N → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜)))
216, 20syl 17 . . . . . 6 (𝐴Q → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜)))
22 mulidpi 9587 . . . . . . . 8 (((1st𝐴) +N 1𝑜) ∈ N → (((1st𝐴) +N 1𝑜) ·N 1𝑜) = ((1st𝐴) +N 1𝑜))
236, 22syl 17 . . . . . . 7 (𝐴Q → (((1st𝐴) +N 1𝑜) ·N 1𝑜) = ((1st𝐴) +N 1𝑜))
2423breq2d 4595 . . . . . 6 (𝐴Q → ((((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N (((1st𝐴) +N 1𝑜) ·N 1𝑜) ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)))
2521, 24bitrd 267 . . . . 5 (𝐴Q → ((2nd𝐴) <N 1𝑜 ↔ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)))
2619, 25mtbii 315 . . . 4 (𝐴Q → ¬ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜))
27 ltsopi 9589 . . . . 5 <N Or N
28 ltrelpi 9590 . . . . 5 <N ⊆ (N × N)
2927, 28sotri3 5445 . . . 4 (((((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) ∈ N ∧ (1st𝐴) <N ((1st𝐴) +N 1𝑜) ∧ ¬ (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)) <N ((1st𝐴) +N 1𝑜)) → (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
3010, 18, 26, 29syl3anc 1318 . . 3 (𝐴Q → (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
31 pinq 9628 . . . . . 6 (((1st𝐴) +N 1𝑜) ∈ N → ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q)
326, 31syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q)
33 ordpinq 9644 . . . . 5 ((𝐴Q ∧ ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ∈ Q) → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴))))
3432, 33mpdan 699 . . . 4 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴))))
35 ovex 6577 . . . . . . . 8 ((1st𝐴) +N 1𝑜) ∈ V
364elexi 3186 . . . . . . . 8 1𝑜 ∈ V
3735, 36op2nd 7068 . . . . . . 7 (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) = 1𝑜
3837oveq2i 6560 . . . . . 6 ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) = ((1st𝐴) ·N 1𝑜)
39 mulidpi 9587 . . . . . . 7 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1𝑜) = (1st𝐴))
403, 39syl 17 . . . . . 6 (𝐴Q → ((1st𝐴) ·N 1𝑜) = (1st𝐴))
4138, 40syl5eq 2656 . . . . 5 (𝐴Q → ((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) = (1st𝐴))
4235, 36op1st 7067 . . . . . . 7 (1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) = ((1st𝐴) +N 1𝑜)
4342oveq1i 6559 . . . . . 6 ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))
4443a1i 11 . . . . 5 (𝐴Q → ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) = (((1st𝐴) +N 1𝑜) ·N (2nd𝐴)))
4541, 44breq12d 4596 . . . 4 (𝐴Q → (((1st𝐴) ·N (2nd ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)) <N ((1st ‘⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) ·N (2nd𝐴)) ↔ (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))))
4634, 45bitrd 267 . . 3 (𝐴Q → (𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩ ↔ (1st𝐴) <N (((1st𝐴) +N 1𝑜) ·N (2nd𝐴))))
4730, 46mpbird 246 . 2 (𝐴Q𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)
48 opeq1 4340 . . . 4 (𝑥 = ((1st𝐴) +N 1𝑜) → ⟨𝑥, 1𝑜⟩ = ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩)
4948breq2d 4595 . . 3 (𝑥 = ((1st𝐴) +N 1𝑜) → (𝐴 <Q𝑥, 1𝑜⟩ ↔ 𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩))
5049rspcev 3282 . 2 ((((1st𝐴) +N 1𝑜) ∈ N𝐴 <Q ⟨((1st𝐴) +N 1𝑜), 1𝑜⟩) → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
516, 47, 50syl2anc 691 1 (𝐴Q → ∃𝑥N 𝐴 <Q𝑥, 1𝑜⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  cop 4131   class class class wbr 4583   × cxp 5036  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  1𝑜c1o 7440  Ncnpi 9545   +N cpli 9546   ·N cmi 9547   <N clti 9548  Qcnq 9553   <Q cltq 9559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-ni 9573  df-pli 9574  df-mi 9575  df-lti 9576  df-ltpq 9611  df-nq 9613  df-ltnq 9619
This theorem is referenced by:  prlem934  9734
  Copyright terms: Public domain W3C validator