Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anxordi | Structured version Visualization version GIF version |
Description: Conjunction distributes over exclusive-or. In intuitionistic logic this assertion is also true, even though xordi 935 does not necessarily hold, in part because the usual definition of xor is subtly different in intuitionistic logic. (Contributed by David A. Wheeler, 7-Oct-2018.) |
Ref | Expression |
---|---|
anxordi | ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xordi 935 | . 2 ⊢ ((𝜑 ∧ ¬ (𝜓 ↔ 𝜒)) ↔ ¬ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
2 | df-xor 1457 | . . 3 ⊢ ((𝜓 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) | |
3 | 2 | anbi2i 726 | . 2 ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ∧ ¬ (𝜓 ↔ 𝜒))) |
4 | df-xor 1457 | . 2 ⊢ (((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒)) ↔ ¬ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) | |
5 | 1, 3, 4 | 3bitr4i 291 | 1 ⊢ ((𝜑 ∧ (𝜓 ⊻ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ⊻ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 195 ∧ wa 383 ⊻ wxo 1456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 df-xor 1457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |