Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anbi1 | Structured version Visualization version GIF version |
Description: Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
anbi1 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | anbi1d 737 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 |
This theorem is referenced by: pm5.75 974 pm5.75OLD 975 nanbi1 1447 relexpindlem 13651 rexfiuz 13935 bnj916 30257 |
Copyright terms: Public domain | W3C validator |