Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  anandir Structured version   Visualization version   GIF version

Theorem anandir 868
 Description: Distribution of conjunction over conjunction. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
anandir (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))

Proof of Theorem anandir
StepHypRef Expression
1 anidm 674 . . 3 ((𝜒𝜒) ↔ 𝜒)
21anbi2i 726 . 2 (((𝜑𝜓) ∧ (𝜒𝜒)) ↔ ((𝜑𝜓) ∧ 𝜒))
3 an4 861 . 2 (((𝜑𝜓) ∧ (𝜒𝜒)) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))
42, 3bitr3i 265 1 (((𝜑𝜓) ∧ 𝜒) ↔ ((𝜑𝜒) ∧ (𝜓𝜒)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385 This theorem is referenced by:  anandi3r  1046  disjxun  4581  fununi  5878  imadif  5887  wfrlem5  7306  elfzuzb  12207  frgra3v  26529  5oalem3  27899  5oalem5  27901  frrlem5  31028  nzin  37539  un2122  38038  frgr3v  41445
 Copyright terms: Public domain W3C validator