Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpsspw Structured version   Visualization version   GIF version

Theorem altxpsspw 31254
 Description: An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpsspw (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)

Proof of Theorem altxpsspw
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaltxp 31252 . . 3 (𝑧 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫)
2 df-altop 31235 . . . . . 6 𝑥, 𝑦⟫ = {{𝑥}, {𝑥, {𝑦}}}
3 snssi 4280 . . . . . . . . 9 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 ssun3 3740 . . . . . . . . 9 ({𝑥} ⊆ 𝐴 → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵))
53, 4syl 17 . . . . . . . 8 (𝑥𝐴 → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵))
65adantr 480 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → {𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵))
7 elun1 3742 . . . . . . . . 9 (𝑥𝐴𝑥 ∈ (𝐴 ∪ 𝒫 𝐵))
8 snssi 4280 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ⊆ 𝐵)
9 snex 4835 . . . . . . . . . . . 12 {𝑦} ∈ V
109elpw 4114 . . . . . . . . . . 11 ({𝑦} ∈ 𝒫 𝐵 ↔ {𝑦} ⊆ 𝐵)
11 elun2 3743 . . . . . . . . . . 11 ({𝑦} ∈ 𝒫 𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵))
1210, 11sylbir 224 . . . . . . . . . 10 ({𝑦} ⊆ 𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵))
138, 12syl 17 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵))
147, 13anim12i 588 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → (𝑥 ∈ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵)))
15 vex 3176 . . . . . . . . 9 𝑥 ∈ V
1615, 9prss 4291 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑦} ∈ (𝐴 ∪ 𝒫 𝐵)) ↔ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵))
1714, 16sylib 207 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵))
18 prex 4836 . . . . . . . . 9 {{𝑥}, {𝑥, {𝑦}}} ∈ V
1918elpw 4114 . . . . . . . 8 ({{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ {{𝑥}, {𝑥, {𝑦}}} ⊆ 𝒫 (𝐴 ∪ 𝒫 𝐵))
20 snex 4835 . . . . . . . . 9 {𝑥} ∈ V
21 prex 4836 . . . . . . . . 9 {𝑥, {𝑦}} ∈ V
2220, 21prsspw 4316 . . . . . . . 8 ({{𝑥}, {𝑥, {𝑦}}} ⊆ 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ ({𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵)))
2319, 22bitri 263 . . . . . . 7 ({{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ↔ ({𝑥} ⊆ (𝐴 ∪ 𝒫 𝐵) ∧ {𝑥, {𝑦}} ⊆ (𝐴 ∪ 𝒫 𝐵)))
246, 17, 23sylanbrc 695 . . . . . 6 ((𝑥𝐴𝑦𝐵) → {{𝑥}, {𝑥, {𝑦}}} ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))
252, 24syl5eqel 2692 . . . . 5 ((𝑥𝐴𝑦𝐵) → ⟪𝑥, 𝑦⟫ ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))
26 eleq1a 2683 . . . . 5 (⟪𝑥, 𝑦⟫ ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) → (𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)))
2725, 26syl 17 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)))
2827rexlimivv 3018 . . 3 (∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫ → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))
291, 28sylbi 206 . 2 (𝑧 ∈ (𝐴 ×× 𝐵) → 𝑧 ∈ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵))
3029ssriv 3572 1 (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∃wrex 2897   ∪ cun 3538   ⊆ wss 3540  𝒫 cpw 4108  {csn 4125  {cpr 4127  ⟪caltop 31233   ×× caltxp 31234 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128  df-altop 31235  df-altxp 31236 This theorem is referenced by:  altxpexg  31255
 Copyright terms: Public domain W3C validator