Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altxpexg | Structured version Visualization version GIF version |
Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.) |
Ref | Expression |
---|---|
altxpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altxpsspw 31254 | . 2 ⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) | |
2 | pwexg 4776 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ∈ V) | |
3 | unexg 6857 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐵 ∈ V) → (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
4 | 2, 3 | sylan2 490 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝒫 𝐵) ∈ V) |
5 | pwexg 4776 | . . 3 ⊢ ((𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
6 | pwexg 4776 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) |
8 | ssexg 4732 | . 2 ⊢ (((𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) → (𝐴 ×× 𝐵) ∈ V) | |
9 | 1, 7, 8 | sylancr 694 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 Vcvv 3173 ∪ cun 3538 ⊆ wss 3540 𝒫 cpw 4108 ×× caltxp 31234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-pw 4110 df-sn 4126 df-pr 4128 df-uni 4373 df-altop 31235 df-altxp 31236 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |