MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephom Structured version   Visualization version   GIF version

Theorem alephom 9286
Description: From canth2 7998, we know that (ℵ‘0) < (2↑ω), but we cannot prove that (2↑ω) = (ℵ‘1) (this is the Continuum Hypothesis), nor can we prove that it is less than any bound whatsoever (i.e. the statement (ℵ‘𝐴) < (2↑ω) is consistent for any ordinal 𝐴). However, we can prove that (2↑ω) is not equal to (ℵ‘ω), nor (ℵ‘(ℵ‘ω)), on cofinality grounds, because by Konig's Theorem konigth 9270 (in the form of cfpwsdom 9285), (2↑ω) has uncountable cofinality, which eliminates limit alephs like (ℵ‘ω). (The first limit aleph that is not eliminated is (ℵ‘(ℵ‘1)), which has cofinality (ℵ‘1).) (Contributed by Mario Carneiro, 21-Mar-2013.)
Assertion
Ref Expression
alephom (card‘(2𝑜𝑚 ω)) ≠ (ℵ‘ω)

Proof of Theorem alephom
StepHypRef Expression
1 sdomirr 7982 . 2 ¬ ω ≺ ω
2 2onn 7607 . . . . . 6 2𝑜 ∈ ω
32elexi 3186 . . . . 5 2𝑜 ∈ V
4 domrefg 7876 . . . . 5 (2𝑜 ∈ V → 2𝑜 ≼ 2𝑜)
53cfpwsdom 9285 . . . . 5 (2𝑜 ≼ 2𝑜 → (ℵ‘∅) ≺ (cf‘(card‘(2𝑜𝑚 (ℵ‘∅)))))
63, 4, 5mp2b 10 . . . 4 (ℵ‘∅) ≺ (cf‘(card‘(2𝑜𝑚 (ℵ‘∅))))
7 aleph0 8772 . . . . . 6 (ℵ‘∅) = ω
87a1i 11 . . . . 5 ((card‘(2𝑜𝑚 ω)) = (ℵ‘ω) → (ℵ‘∅) = ω)
97oveq2i 6560 . . . . . . . . . 10 (2𝑜𝑚 (ℵ‘∅)) = (2𝑜𝑚 ω)
109fveq2i 6106 . . . . . . . . 9 (card‘(2𝑜𝑚 (ℵ‘∅))) = (card‘(2𝑜𝑚 ω))
1110eqeq1i 2615 . . . . . . . 8 ((card‘(2𝑜𝑚 (ℵ‘∅))) = (ℵ‘ω) ↔ (card‘(2𝑜𝑚 ω)) = (ℵ‘ω))
1211biimpri 217 . . . . . . 7 ((card‘(2𝑜𝑚 ω)) = (ℵ‘ω) → (card‘(2𝑜𝑚 (ℵ‘∅))) = (ℵ‘ω))
1312fveq2d 6107 . . . . . 6 ((card‘(2𝑜𝑚 ω)) = (ℵ‘ω) → (cf‘(card‘(2𝑜𝑚 (ℵ‘∅)))) = (cf‘(ℵ‘ω)))
14 limom 6972 . . . . . . . 8 Lim ω
15 alephsing 8981 . . . . . . . 8 (Lim ω → (cf‘(ℵ‘ω)) = (cf‘ω))
1614, 15ax-mp 5 . . . . . . 7 (cf‘(ℵ‘ω)) = (cf‘ω)
17 cfom 8969 . . . . . . 7 (cf‘ω) = ω
1816, 17eqtri 2632 . . . . . 6 (cf‘(ℵ‘ω)) = ω
1913, 18syl6eq 2660 . . . . 5 ((card‘(2𝑜𝑚 ω)) = (ℵ‘ω) → (cf‘(card‘(2𝑜𝑚 (ℵ‘∅)))) = ω)
208, 19breq12d 4596 . . . 4 ((card‘(2𝑜𝑚 ω)) = (ℵ‘ω) → ((ℵ‘∅) ≺ (cf‘(card‘(2𝑜𝑚 (ℵ‘∅)))) ↔ ω ≺ ω))
216, 20mpbii 222 . . 3 ((card‘(2𝑜𝑚 ω)) = (ℵ‘ω) → ω ≺ ω)
2221necon3bi 2808 . 2 (¬ ω ≺ ω → (card‘(2𝑜𝑚 ω)) ≠ (ℵ‘ω))
231, 22ax-mp 5 1 (card‘(2𝑜𝑚 ω)) ≠ (ℵ‘ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  c0 3874   class class class wbr 4583  Lim wlim 5641  cfv 5804  (class class class)co 6549  ωcom 6957  2𝑜c2o 7441  𝑚 cmap 7744  cdom 7839  csdm 7840  cardccrd 8644  cale 8645  cfccf 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-smo 7330  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-har 8346  df-card 8648  df-aleph 8649  df-cf 8650  df-acn 8651  df-ac 8822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator