Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aibandbiaiffaiffb Structured version   Visualization version   GIF version

Theorem aibandbiaiffaiffb 39710
Description: A closed form showing (a implies b and b implies a) same-as (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.)
Assertion
Ref Expression
aibandbiaiffaiffb (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (𝜑𝜓))

Proof of Theorem aibandbiaiffaiffb
StepHypRef Expression
1 dfbi2 658 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21bicomi 213 1 (((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-an 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator