Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvfv0bi Structured version   Visualization version   GIF version

Theorem afvfv0bi 39881
 Description: The function's value at an argument is the empty set if and only if the value of the alternative function at this argument is either the empty set or the universe. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvfv0bi ((𝐹𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))

Proof of Theorem afvfv0bi
StepHypRef Expression
1 ioran 510 . . . 4 (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) ↔ (¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V))
2 df-ne 2782 . . . . . . 7 ((𝐹'''𝐴) ≠ V ↔ ¬ (𝐹'''𝐴) = V)
3 afvnufveq 39876 . . . . . . 7 ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹𝐴))
42, 3sylbir 224 . . . . . 6 (¬ (𝐹'''𝐴) = V → (𝐹'''𝐴) = (𝐹𝐴))
5 eqeq1 2614 . . . . . . . 8 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65notbid 307 . . . . . . 7 ((𝐹'''𝐴) = (𝐹𝐴) → (¬ (𝐹'''𝐴) = ∅ ↔ ¬ (𝐹𝐴) = ∅))
76biimpd 218 . . . . . 6 ((𝐹'''𝐴) = (𝐹𝐴) → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹𝐴) = ∅))
84, 7syl 17 . . . . 5 (¬ (𝐹'''𝐴) = V → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹𝐴) = ∅))
98impcom 445 . . . 4 ((¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V) → ¬ (𝐹𝐴) = ∅)
101, 9sylbi 206 . . 3 (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → ¬ (𝐹𝐴) = ∅)
1110con4i 112 . 2 ((𝐹𝐴) = ∅ → ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))
12 afv0fv0 39878 . . 3 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)
13 afvpcfv0 39875 . . 3 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)
1412, 13jaoi 393 . 2 (((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → (𝐹𝐴) = ∅)
1511, 14impbii 198 1 ((𝐹𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ≠ wne 2780  Vcvv 3173  ∅c0 3874  ‘cfv 5804  '''cafv 39843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-dfat 39845  df-afv 39846 This theorem is referenced by:  aovov0bi  39925
 Copyright terms: Public domain W3C validator