Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afveq2 | Structured version Visualization version GIF version |
Description: Equality theorem for function value, analogous to fveq1 6102. (Contributed by Alexander van der Vekens, 22-Jul-2017.) |
Ref | Expression |
---|---|
afveq2 | ⊢ (𝐴 = 𝐵 → (𝐹'''𝐴) = (𝐹'''𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2611 | . 2 ⊢ (𝐴 = 𝐵 → 𝐹 = 𝐹) | |
2 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 1, 2 | afveq12d 39862 | 1 ⊢ (𝐴 = 𝐵 → (𝐹'''𝐴) = (𝐹'''𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 '''cafv 39843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-res 5050 df-iota 5768 df-fun 5806 df-fv 5812 df-dfat 39845 df-afv 39846 |
This theorem is referenced by: ffnaov 39928 |
Copyright terms: Public domain | W3C validator |