Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveq2 Structured version   Visualization version   GIF version

Theorem afveq2 39864
Description: Equality theorem for function value, analogous to fveq1 6102. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
afveq2 (𝐴 = 𝐵 → (𝐹'''𝐴) = (𝐹'''𝐵))

Proof of Theorem afveq2
StepHypRef Expression
1 eqidd 2611 . 2 (𝐴 = 𝐵𝐹 = 𝐹)
2 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2afveq12d 39862 1 (𝐴 = 𝐵 → (𝐹'''𝐴) = (𝐹'''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  '''cafv 39843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-dfat 39845  df-afv 39846
This theorem is referenced by:  ffnaov  39928
  Copyright terms: Public domain W3C validator