Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  aevALTOLD Structured version   Visualization version   GIF version

Theorem aevALTOLD 2309
 Description: Older alternate proof of aev 1970. Obsolete as of 30-Mar-2021. (Contributed by NM, 8-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
aevALTOLD (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣)
Distinct variable group:   𝑥,𝑦

Proof of Theorem aevALTOLD
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 hbae 2303 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
2 aevlem 1968 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑢 𝑢 = 𝑣)
3 ax7 1930 . . . 4 (𝑢 = 𝑤 → (𝑢 = 𝑣𝑤 = 𝑣))
43spimv 2245 . . 3 (∀𝑢 𝑢 = 𝑣𝑤 = 𝑣)
52, 4syl 17 . 2 (∀𝑥 𝑥 = 𝑦𝑤 = 𝑣)
61, 5alrimih 1741 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator