Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aecoms-o Structured version   Visualization version   GIF version

Theorem aecoms-o 33205
 Description: A commutation rule for identical variable specifiers. Version of aecoms 2300 using ax-c11 33190. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
alequcoms-o.1 (∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
aecoms-o (∀𝑦 𝑦 = 𝑥𝜑)

Proof of Theorem aecoms-o
StepHypRef Expression
1 aecom-o 33204 . 2 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
2 alequcoms-o.1 . 2 (∀𝑥 𝑥 = 𝑦𝜑)
31, 2syl 17 1 (∀𝑦 𝑦 = 𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-c5 33186  ax-c4 33187  ax-c7 33188  ax-c10 33189  ax-c11 33190  ax-c9 33193 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696 This theorem is referenced by:  hbae-o  33206  dral1-o  33207  dvelimf-o  33232  aev-o  33234  ax12indalem  33248  ax12inda2ALT  33249
 Copyright terms: Public domain W3C validator