Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aecom-o | Structured version Visualization version GIF version |
Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). Version of aecom 2299 using ax-c11 33190. Unlike axc11nfromc11 33229, this version does not require ax-5 1827 (see comment of equcomi1 33203). (Contributed by NM, 10-May-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
aecom-o | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c11 33190 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)) | |
2 | 1 | pm2.43i 50 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦) |
3 | equcomi1 33203 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | |
4 | 3 | alimi 1730 | . 2 ⊢ (∀𝑦 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
5 | 2, 4 | syl 17 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-c5 33186 ax-c4 33187 ax-c7 33188 ax-c10 33189 ax-c11 33190 ax-c9 33193 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 |
This theorem is referenced by: aecoms-o 33205 naecoms-o 33230 aev-o 33234 ax12indalem 33248 |
Copyright terms: Public domain | W3C validator |