HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjeq Structured version   Visualization version   GIF version

Theorem adjeq 28178
Description: A property that determines the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjeq ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → (adj𝑇) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem adjeq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 28129 . 2 Fun adj
2 df-adjh 28092 . . . . . 6 adj = {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))}
32eleq2i 2680 . . . . 5 (⟨𝑇, 𝑆⟩ ∈ adj ↔ ⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))})
4 ax-hilex 27240 . . . . . . 7 ℋ ∈ V
5 fex 6394 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V)
64, 5mpan2 703 . . . . . 6 (𝑇: ℋ⟶ ℋ → 𝑇 ∈ V)
7 fex 6394 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑆 ∈ V)
84, 7mpan2 703 . . . . . 6 (𝑆: ℋ⟶ ℋ → 𝑆 ∈ V)
9 feq1 5939 . . . . . . . 8 (𝑧 = 𝑇 → (𝑧: ℋ⟶ ℋ ↔ 𝑇: ℋ⟶ ℋ))
10 fveq1 6102 . . . . . . . . . . 11 (𝑧 = 𝑇 → (𝑧𝑥) = (𝑇𝑥))
1110oveq1d 6564 . . . . . . . . . 10 (𝑧 = 𝑇 → ((𝑧𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
1211eqeq1d 2612 . . . . . . . . 9 (𝑧 = 𝑇 → (((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))))
13122ralbidv 2972 . . . . . . . 8 (𝑧 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))))
149, 133anbi13d 1393 . . . . . . 7 (𝑧 = 𝑇 → ((𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))))
15 feq1 5939 . . . . . . . 8 (𝑤 = 𝑆 → (𝑤: ℋ⟶ ℋ ↔ 𝑆: ℋ⟶ ℋ))
16 fveq1 6102 . . . . . . . . . . 11 (𝑤 = 𝑆 → (𝑤𝑦) = (𝑆𝑦))
1716oveq2d 6565 . . . . . . . . . 10 (𝑤 = 𝑆 → (𝑥 ·ih (𝑤𝑦)) = (𝑥 ·ih (𝑆𝑦)))
1817eqeq2d 2620 . . . . . . . . 9 (𝑤 = 𝑆 → (((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
19182ralbidv 2972 . . . . . . . 8 (𝑤 = 𝑆 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2015, 193anbi23d 1394 . . . . . . 7 (𝑤 = 𝑆 → ((𝑇: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦))) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
2114, 20opelopabg 4918 . . . . . 6 ((𝑇 ∈ V ∧ 𝑆 ∈ V) → (⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
226, 8, 21syl2an 493 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ (𝑧: ℋ⟶ ℋ ∧ 𝑤: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑧𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑤𝑦)))} ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
233, 22syl5bb 271 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ adj ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
24 df-3an 1033 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) ↔ ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2524baibr 943 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)) ↔ (𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦)))))
2623, 25bitr4d 270 . . 3 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ) → (⟨𝑇, 𝑆⟩ ∈ adj ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))))
2726biimp3ar 1425 . 2 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → ⟨𝑇, 𝑆⟩ ∈ adj)
28 funopfv 6145 . 2 (Fun adj → (⟨𝑇, 𝑆⟩ ∈ adj → (adj𝑇) = 𝑆))
291, 27, 28mpsyl 66 1 ((𝑇: ℋ⟶ ℋ ∧ 𝑆: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑆𝑦))) → (adj𝑇) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cop 4131  {copab 4642  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  chil 27160   ·ih csp 27163  adjcado 27196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212  df-adjh 28092
This theorem is referenced by:  unopadj2  28181  hmopadj  28182  adj0  28237  adjmul  28335  adjadd  28336
  Copyright terms: Public domain W3C validator