MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem1 Structured version   Visualization version   GIF version

Theorem addclprlem1 9717
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem1 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))

Proof of Theorem addclprlem1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 9692 . . 3 ((𝐴P𝑔𝐴) → 𝑔Q)
2 ltrnq 9680 . . . . 5 (𝑥 <Q (𝑔 +Q ) ↔ (*Q‘(𝑔 +Q )) <Q (*Q𝑥))
3 ltmnq 9673 . . . . . 6 (𝑥Q → ((*Q‘(𝑔 +Q )) <Q (*Q𝑥) ↔ (𝑥 ·Q (*Q‘(𝑔 +Q ))) <Q (𝑥 ·Q (*Q𝑥))))
4 ovex 6577 . . . . . . 7 (𝑥 ·Q (*Q‘(𝑔 +Q ))) ∈ V
5 ovex 6577 . . . . . . 7 (𝑥 ·Q (*Q𝑥)) ∈ V
6 ltmnq 9673 . . . . . . 7 (𝑤Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
7 vex 3176 . . . . . . 7 𝑔 ∈ V
8 mulcomnq 9654 . . . . . . 7 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
94, 5, 6, 7, 8caovord2 6744 . . . . . 6 (𝑔Q → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) <Q (𝑥 ·Q (*Q𝑥)) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
103, 9sylan9bbr 733 . . . . 5 ((𝑔Q𝑥Q) → ((*Q‘(𝑔 +Q )) <Q (*Q𝑥) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
112, 10syl5bb 271 . . . 4 ((𝑔Q𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
12 recidnq 9666 . . . . . . 7 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
1312oveq1d 6564 . . . . . 6 (𝑥Q → ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) = (1Q ·Q 𝑔))
14 mulcomnq 9654 . . . . . . 7 (1Q ·Q 𝑔) = (𝑔 ·Q 1Q)
15 mulidnq 9664 . . . . . . 7 (𝑔Q → (𝑔 ·Q 1Q) = 𝑔)
1614, 15syl5eq 2656 . . . . . 6 (𝑔Q → (1Q ·Q 𝑔) = 𝑔)
1713, 16sylan9eqr 2666 . . . . 5 ((𝑔Q𝑥Q) → ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) = 𝑔)
1817breq2d 4595 . . . 4 ((𝑔Q𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
1911, 18bitrd 267 . . 3 ((𝑔Q𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
201, 19sylan 487 . 2 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
21 prcdnq 9694 . . 3 ((𝐴P𝑔𝐴) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
2221adantr 480 . 2 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
2320, 22sylbid 229 1 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  Qcnq 9553  1Qc1q 9554   +Q cplq 9556   ·Q cmq 9557  *Qcrq 9558   <Q cltq 9559  Pcnp 9560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-ni 9573  df-mi 9575  df-lti 9576  df-mpq 9610  df-ltpq 9611  df-enq 9612  df-nq 9613  df-erq 9614  df-mq 9616  df-1nq 9617  df-rq 9618  df-ltnq 9619  df-np 9682
This theorem is referenced by:  addclprlem2  9718
  Copyright terms: Public domain W3C validator