Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adantlllr Structured version   Visualization version   GIF version

Theorem adantlllr 38222
 Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
adantlllr.1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
adantlllr (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem adantlllr
StepHypRef Expression
1 adantlllr.1 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
21adantl3r 782 1 (((((𝜑𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-an 385 This theorem is referenced by:  supxrge  38495  xrralrecnnle  38543  limclner  38718  icccncfext  38773  fourierdlem64  39063  fourierdlem73  39072  etransclem35  39162  sge0tsms  39273  hoicvr  39438  hspmbllem2  39517  smflimlem4  39660
 Copyright terms: Public domain W3C validator