Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsdrsel | Structured version Visualization version GIF version |
Description: An algebraic closure system contains all directed unions of closed sets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsdrsel | ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → ∪ 𝑌 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g 4754 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑌 ∈ 𝒫 𝐶 ↔ 𝑌 ⊆ 𝐶)) | |
2 | 1 | biimpar 501 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶) → 𝑌 ∈ 𝒫 𝐶) |
3 | isacs3lem 16989 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
4 | 3 | simprd 478 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) |
6 | fveq2 6103 | . . . . . 6 ⊢ (𝑠 = 𝑌 → (toInc‘𝑠) = (toInc‘𝑌)) | |
7 | 6 | eleq1d 2672 | . . . . 5 ⊢ (𝑠 = 𝑌 → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘𝑌) ∈ Dirset)) |
8 | unieq 4380 | . . . . . 6 ⊢ (𝑠 = 𝑌 → ∪ 𝑠 = ∪ 𝑌) | |
9 | 8 | eleq1d 2672 | . . . . 5 ⊢ (𝑠 = 𝑌 → (∪ 𝑠 ∈ 𝐶 ↔ ∪ 𝑌 ∈ 𝐶)) |
10 | 7, 9 | imbi12d 333 | . . . 4 ⊢ (𝑠 = 𝑌 → (((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶) ↔ ((toInc‘𝑌) ∈ Dirset → ∪ 𝑌 ∈ 𝐶))) |
11 | 10 | rspcva 3280 | . . 3 ⊢ ((𝑌 ∈ 𝒫 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → ((toInc‘𝑌) ∈ Dirset → ∪ 𝑌 ∈ 𝐶)) |
12 | 2, 5, 11 | syl2anc 691 | . 2 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶) → ((toInc‘𝑌) ∈ Dirset → ∪ 𝑌 ∈ 𝐶)) |
13 | 12 | 3impia 1253 | 1 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝐶 ∧ (toInc‘𝑌) ∈ Dirset) → ∪ 𝑌 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 ‘cfv 5804 Moorecmre 16065 ACScacs 16068 Dirsetcdrs 16750 toInccipo 16974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-tset 15787 df-ple 15788 df-ocomp 15790 df-mre 16069 df-mrc 16070 df-acs 16072 df-preset 16751 df-drs 16752 df-poset 16769 df-ipo 16975 |
This theorem is referenced by: isnacs3 36291 |
Copyright terms: Public domain | W3C validator |