Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acosval | Structured version Visualization version GIF version |
Description: Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
acosval | ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . 3 ⊢ (𝑥 = 𝐴 → (arcsin‘𝑥) = (arcsin‘𝐴)) | |
2 | 1 | oveq2d 6565 | . 2 ⊢ (𝑥 = 𝐴 → ((π / 2) − (arcsin‘𝑥)) = ((π / 2) − (arcsin‘𝐴))) |
3 | df-acos 24393 | . 2 ⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) | |
4 | ovex 6577 | . 2 ⊢ ((π / 2) − (arcsin‘𝐴)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6191 | 1 ⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 − cmin 10145 / cdiv 10563 2c2 10947 πcpi 14636 arcsincasin 24389 arccoscacos 24390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-acos 24393 |
This theorem is referenced by: acosneg 24414 cosacos 24417 acoscos 24420 acos1 24422 acosbnd 24427 acosrecl 24430 sinacos 24432 |
Copyright terms: Public domain | W3C validator |