MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem5 Structured version   Visualization version   GIF version

Theorem ackbij1lem5 8929
Description: Lemma for ackbij2 8948. (Contributed by Stefan O'Rear, 19-Nov-2014.)
Assertion
Ref Expression
ackbij1lem5 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +𝑜 (card‘𝒫 𝐴)))

Proof of Theorem ackbij1lem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 suceq 5707 . . . . 5 (𝑎 = 𝐴 → suc 𝑎 = suc 𝐴)
21pweqd 4113 . . . 4 (𝑎 = 𝐴 → 𝒫 suc 𝑎 = 𝒫 suc 𝐴)
32fveq2d 6107 . . 3 (𝑎 = 𝐴 → (card‘𝒫 suc 𝑎) = (card‘𝒫 suc 𝐴))
4 pweq 4111 . . . . 5 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
54fveq2d 6107 . . . 4 (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴))
65, 5oveq12d 6567 . . 3 (𝑎 = 𝐴 → ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)) = ((card‘𝒫 𝐴) +𝑜 (card‘𝒫 𝐴)))
73, 6eqeq12d 2625 . 2 (𝑎 = 𝐴 → ((card‘𝒫 suc 𝑎) = ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)) ↔ (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +𝑜 (card‘𝒫 𝐴))))
8 vex 3176 . . . . . . . . 9 𝑎 ∈ V
98sucex 6903 . . . . . . . 8 suc 𝑎 ∈ V
109pw2en 7952 . . . . . . 7 𝒫 suc 𝑎 ≈ (2𝑜𝑚 suc 𝑎)
11 df-suc 5646 . . . . . . . . . 10 suc 𝑎 = (𝑎 ∪ {𝑎})
1211oveq2i 6560 . . . . . . . . 9 (2𝑜𝑚 suc 𝑎) = (2𝑜𝑚 (𝑎 ∪ {𝑎}))
13 nnord 6965 . . . . . . . . . . 11 (𝑎 ∈ ω → Ord 𝑎)
14 orddisj 5679 . . . . . . . . . . 11 (Ord 𝑎 → (𝑎 ∩ {𝑎}) = ∅)
15 snex 4835 . . . . . . . . . . . 12 {𝑎} ∈ V
16 2onn 7607 . . . . . . . . . . . . 13 2𝑜 ∈ ω
1716elexi 3186 . . . . . . . . . . . 12 2𝑜 ∈ V
18 mapunen 8014 . . . . . . . . . . . . 13 (((𝑎 ∈ V ∧ {𝑎} ∈ V ∧ 2𝑜 ∈ V) ∧ (𝑎 ∩ {𝑎}) = ∅) → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})))
1918ex 449 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ {𝑎} ∈ V ∧ 2𝑜 ∈ V) → ((𝑎 ∩ {𝑎}) = ∅ → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎}))))
208, 15, 17, 19mp3an 1416 . . . . . . . . . . 11 ((𝑎 ∩ {𝑎}) = ∅ → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})))
2113, 14, 203syl 18 . . . . . . . . . 10 (𝑎 ∈ ω → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})))
22 ovex 6577 . . . . . . . . . . . 12 (2𝑜𝑚 𝑎) ∈ V
2322enref 7874 . . . . . . . . . . 11 (2𝑜𝑚 𝑎) ≈ (2𝑜𝑚 𝑎)
2417, 8mapsnen 7920 . . . . . . . . . . 11 (2𝑜𝑚 {𝑎}) ≈ 2𝑜
25 xpen 8008 . . . . . . . . . . 11 (((2𝑜𝑚 𝑎) ≈ (2𝑜𝑚 𝑎) ∧ (2𝑜𝑚 {𝑎}) ≈ 2𝑜) → ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
2623, 24, 25mp2an 704 . . . . . . . . . 10 ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜)
27 entr 7894 . . . . . . . . . 10 (((2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})) ∧ ((2𝑜𝑚 𝑎) × (2𝑜𝑚 {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜)) → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
2821, 26, 27sylancl 693 . . . . . . . . 9 (𝑎 ∈ ω → (2𝑜𝑚 (𝑎 ∪ {𝑎})) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
2912, 28syl5eqbr 4618 . . . . . . . 8 (𝑎 ∈ ω → (2𝑜𝑚 suc 𝑎) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
308pw2en 7952 . . . . . . . . . 10 𝒫 𝑎 ≈ (2𝑜𝑚 𝑎)
3117enref 7874 . . . . . . . . . 10 2𝑜 ≈ 2𝑜
32 xpen 8008 . . . . . . . . . 10 ((𝒫 𝑎 ≈ (2𝑜𝑚 𝑎) ∧ 2𝑜 ≈ 2𝑜) → (𝒫 𝑎 × 2𝑜) ≈ ((2𝑜𝑚 𝑎) × 2𝑜))
3330, 31, 32mp2an 704 . . . . . . . . 9 (𝒫 𝑎 × 2𝑜) ≈ ((2𝑜𝑚 𝑎) × 2𝑜)
3433ensymi 7892 . . . . . . . 8 ((2𝑜𝑚 𝑎) × 2𝑜) ≈ (𝒫 𝑎 × 2𝑜)
35 entr 7894 . . . . . . . 8 (((2𝑜𝑚 suc 𝑎) ≈ ((2𝑜𝑚 𝑎) × 2𝑜) ∧ ((2𝑜𝑚 𝑎) × 2𝑜) ≈ (𝒫 𝑎 × 2𝑜)) → (2𝑜𝑚 suc 𝑎) ≈ (𝒫 𝑎 × 2𝑜))
3629, 34, 35sylancl 693 . . . . . . 7 (𝑎 ∈ ω → (2𝑜𝑚 suc 𝑎) ≈ (𝒫 𝑎 × 2𝑜))
37 entr 7894 . . . . . . 7 ((𝒫 suc 𝑎 ≈ (2𝑜𝑚 suc 𝑎) ∧ (2𝑜𝑚 suc 𝑎) ≈ (𝒫 𝑎 × 2𝑜)) → 𝒫 suc 𝑎 ≈ (𝒫 𝑎 × 2𝑜))
3810, 36, 37sylancr 694 . . . . . 6 (𝑎 ∈ ω → 𝒫 suc 𝑎 ≈ (𝒫 𝑎 × 2𝑜))
39 vpwex 4775 . . . . . . 7 𝒫 𝑎 ∈ V
40 xp2cda 8885 . . . . . . 7 (𝒫 𝑎 ∈ V → (𝒫 𝑎 × 2𝑜) = (𝒫 𝑎 +𝑐 𝒫 𝑎))
4139, 40ax-mp 5 . . . . . 6 (𝒫 𝑎 × 2𝑜) = (𝒫 𝑎 +𝑐 𝒫 𝑎)
4238, 41syl6breq 4624 . . . . 5 (𝑎 ∈ ω → 𝒫 suc 𝑎 ≈ (𝒫 𝑎 +𝑐 𝒫 𝑎))
43 nnfi 8038 . . . . . . . . 9 (𝑎 ∈ ω → 𝑎 ∈ Fin)
44 pwfi 8144 . . . . . . . . 9 (𝑎 ∈ Fin ↔ 𝒫 𝑎 ∈ Fin)
4543, 44sylib 207 . . . . . . . 8 (𝑎 ∈ ω → 𝒫 𝑎 ∈ Fin)
46 ficardid 8671 . . . . . . . 8 (𝒫 𝑎 ∈ Fin → (card‘𝒫 𝑎) ≈ 𝒫 𝑎)
4745, 46syl 17 . . . . . . 7 (𝑎 ∈ ω → (card‘𝒫 𝑎) ≈ 𝒫 𝑎)
48 cdaen 8878 . . . . . . 7 (((card‘𝒫 𝑎) ≈ 𝒫 𝑎 ∧ (card‘𝒫 𝑎) ≈ 𝒫 𝑎) → ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)) ≈ (𝒫 𝑎 +𝑐 𝒫 𝑎))
4947, 47, 48syl2anc 691 . . . . . 6 (𝑎 ∈ ω → ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)) ≈ (𝒫 𝑎 +𝑐 𝒫 𝑎))
5049ensymd 7893 . . . . 5 (𝑎 ∈ ω → (𝒫 𝑎 +𝑐 𝒫 𝑎) ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)))
51 entr 7894 . . . . 5 ((𝒫 suc 𝑎 ≈ (𝒫 𝑎 +𝑐 𝒫 𝑎) ∧ (𝒫 𝑎 +𝑐 𝒫 𝑎) ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))) → 𝒫 suc 𝑎 ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)))
5242, 50, 51syl2anc 691 . . . 4 (𝑎 ∈ ω → 𝒫 suc 𝑎 ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)))
53 carden2b 8676 . . . 4 (𝒫 suc 𝑎 ≈ ((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎)) → (card‘𝒫 suc 𝑎) = (card‘((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))))
5452, 53syl 17 . . 3 (𝑎 ∈ ω → (card‘𝒫 suc 𝑎) = (card‘((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))))
55 ficardom 8670 . . . . 5 (𝒫 𝑎 ∈ Fin → (card‘𝒫 𝑎) ∈ ω)
5645, 55syl 17 . . . 4 (𝑎 ∈ ω → (card‘𝒫 𝑎) ∈ ω)
57 nnacda 8906 . . . 4 (((card‘𝒫 𝑎) ∈ ω ∧ (card‘𝒫 𝑎) ∈ ω) → (card‘((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))) = ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)))
5856, 56, 57syl2anc 691 . . 3 (𝑎 ∈ ω → (card‘((card‘𝒫 𝑎) +𝑐 (card‘𝒫 𝑎))) = ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)))
5954, 58eqtrd 2644 . 2 (𝑎 ∈ ω → (card‘𝒫 suc 𝑎) = ((card‘𝒫 𝑎) +𝑜 (card‘𝒫 𝑎)))
607, 59vtoclga 3245 1 (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +𝑜 (card‘𝒫 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  cin 3539  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583   × cxp 5036  Ord word 5639  suc csuc 5642  cfv 5804  (class class class)co 6549  ωcom 6957  2𝑜c2o 7441   +𝑜 coa 7444  𝑚 cmap 7744  cen 7838  Fincfn 7841  cardccrd 8644   +𝑐 ccda 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873
This theorem is referenced by:  ackbij1lem14  8938
  Copyright terms: Public domain W3C validator