Proof of Theorem aciunf1
Step | Hyp | Ref
| Expression |
1 | | ssrab2 3650 |
. . . 4
⊢ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ⊆ 𝐴 |
2 | | aciunf1.0 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | ssexg 4732 |
. . . 4
⊢ (({𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ∈ V) |
4 | 1, 2, 3 | sylancr 694 |
. . 3
⊢ (𝜑 → {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ∈ V) |
5 | | rabid 3095 |
. . . . . 6
⊢ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ↔ (𝑗 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
6 | 5 | biimpi 205 |
. . . . 5
⊢ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} → (𝑗 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
7 | 6 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) → (𝑗 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
8 | 7 | simprd 478 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) → 𝐵 ≠ ∅) |
9 | | nfrab1 3099 |
. . 3
⊢
Ⅎ𝑗{𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} |
10 | 7 | simpld 474 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) → 𝑗 ∈ 𝐴) |
11 | | aciunf1.1 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
12 | 10, 11 | syldan 486 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) → 𝐵 ∈ 𝑊) |
13 | 4, 8, 9, 12 | aciunf1lem 28844 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵–1-1→∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 ∈ ∪
𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘)) |
14 | | eqidd 2611 |
. . . . 5
⊢ (𝜑 → 𝑓 = 𝑓) |
15 | | nfv 1830 |
. . . . . . 7
⊢
Ⅎ𝑗𝜑 |
16 | | nfcv 2751 |
. . . . . . . 8
⊢
Ⅎ𝑗𝐴 |
17 | | nfrab1 3099 |
. . . . . . . 8
⊢
Ⅎ𝑗{𝑗 ∈ 𝐴 ∣ 𝐵 = ∅} |
18 | 16, 17 | nfdif 3693 |
. . . . . . 7
⊢
Ⅎ𝑗(𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) |
19 | | difrab 3860 |
. . . . . . . . 9
⊢ ({𝑗 ∈ 𝐴 ∣ ⊤} ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) = {𝑗 ∈ 𝐴 ∣ (⊤ ∧ ¬ 𝐵 = ∅)} |
20 | 16 | rabtru 28723 |
. . . . . . . . . 10
⊢ {𝑗 ∈ 𝐴 ∣ ⊤} = 𝐴 |
21 | 20 | difeq1i 3686 |
. . . . . . . . 9
⊢ ({𝑗 ∈ 𝐴 ∣ ⊤} ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) = (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) |
22 | | truan 1492 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ ¬ 𝐵 = ∅) ↔ ¬ 𝐵 = ∅) |
23 | | df-ne 2782 |
. . . . . . . . . . . . 13
⊢ (𝐵 ≠ ∅ ↔ ¬ 𝐵 = ∅) |
24 | 22, 23 | bitr4i 266 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ ¬ 𝐵 = ∅) ↔ 𝐵 ≠ ∅) |
25 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ ((⊤ ∧ ¬ 𝐵 = ∅) ↔ 𝐵 ≠ ∅)) |
26 | 25 | rabbidv 3164 |
. . . . . . . . . 10
⊢ (⊤
→ {𝑗 ∈ 𝐴 ∣ (⊤ ∧ ¬
𝐵 = ∅)} = {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) |
27 | 26 | trud 1484 |
. . . . . . . . 9
⊢ {𝑗 ∈ 𝐴 ∣ (⊤ ∧ ¬ 𝐵 = ∅)} = {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} |
28 | 19, 21, 27 | 3eqtr3i 2640 |
. . . . . . . 8
⊢ (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) = {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} |
29 | 28 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) = {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) |
30 | | eqidd 2611 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = 𝐵) |
31 | 15, 18, 9, 29, 30 | iuneq12df 4480 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅})𝐵 = ∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵) |
32 | | rabid 3095 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅} ↔ (𝑗 ∈ 𝐴 ∧ 𝐵 = ∅)) |
33 | 32 | biimpi 205 |
. . . . . . . . . 10
⊢ (𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅} → (𝑗 ∈ 𝐴 ∧ 𝐵 = ∅)) |
34 | 33 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) → (𝑗 ∈ 𝐴 ∧ 𝐵 = ∅)) |
35 | 34 | simprd 478 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐵 = ∅) |
36 | 35 | ralrimiva 2949 |
. . . . . . 7
⊢ (𝜑 → ∀𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}𝐵 = ∅) |
37 | 17 | iunxdif3 4542 |
. . . . . . 7
⊢
(∀𝑗 ∈
{𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}𝐵 = ∅ → ∪ 𝑗 ∈ (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅})𝐵 = ∪ 𝑗 ∈ 𝐴 𝐵) |
38 | 36, 37 | syl 17 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅})𝐵 = ∪ 𝑗 ∈ 𝐴 𝐵) |
39 | 31, 38 | eqtr3d 2646 |
. . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵 = ∪ 𝑗 ∈ 𝐴 𝐵) |
40 | | eqidd 2611 |
. . . . . . 7
⊢ (𝜑 → ({𝑗} × 𝐵) = ({𝑗} × 𝐵)) |
41 | 15, 18, 9, 29, 40 | iuneq12df 4480 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅})({𝑗} × 𝐵) = ∪
𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ({𝑗} × 𝐵)) |
42 | 35 | xpeq2d 5063 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) → ({𝑗} × 𝐵) = ({𝑗} × ∅)) |
43 | | xp0 5471 |
. . . . . . . . 9
⊢ ({𝑗} × ∅) =
∅ |
44 | 42, 43 | syl6eq 2660 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅}) → ({𝑗} × 𝐵) = ∅) |
45 | 44 | ralrimiva 2949 |
. . . . . . 7
⊢ (𝜑 → ∀𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅} ({𝑗} × 𝐵) = ∅) |
46 | 17 | iunxdif3 4542 |
. . . . . . 7
⊢
(∀𝑗 ∈
{𝑗 ∈ 𝐴 ∣ 𝐵 = ∅} ({𝑗} × 𝐵) = ∅ → ∪ 𝑗 ∈ (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅})({𝑗} × 𝐵) = ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
47 | 45, 46 | syl 17 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ (𝐴 ∖ {𝑗 ∈ 𝐴 ∣ 𝐵 = ∅})({𝑗} × 𝐵) = ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
48 | 41, 47 | eqtr3d 2646 |
. . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ({𝑗} × 𝐵) = ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
49 | 14, 39, 48 | f1eq123d 6044 |
. . . 4
⊢ (𝜑 → (𝑓:∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵–1-1→∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ({𝑗} × 𝐵) ↔ 𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵))) |
50 | 39 | raleqdv 3121 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ ∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘 ↔ ∀𝑘 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘)) |
51 | 49, 50 | anbi12d 743 |
. . 3
⊢ (𝜑 → ((𝑓:∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵–1-1→∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 ∈ ∪
𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘) ↔ (𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘))) |
52 | 51 | exbidv 1837 |
. 2
⊢ (𝜑 → (∃𝑓(𝑓:∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵–1-1→∪ 𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ({𝑗} × 𝐵) ∧ ∀𝑘 ∈ ∪
𝑗 ∈ {𝑗 ∈ 𝐴 ∣ 𝐵 ≠ ∅}𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘) ↔ ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘))) |
53 | 13, 52 | mpbid 221 |
1
⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑘 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑘)) = 𝑘)) |