MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sfi Structured version   Visualization version   GIF version

Theorem ac6sfi 8089
Description: A version of ac6s 9189 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
ac6sfi.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sfi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑓,𝐴   𝑦,𝑓,𝐵,𝑥   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6sfi
Dummy variables 𝑢 𝑤 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3115 . . . 4 (𝑢 = ∅ → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑))
2 feq2 5940 . . . . . 6 (𝑢 = ∅ → (𝑓:𝑢𝐵𝑓:∅⟶𝐵))
3 raleq 3115 . . . . . 6 (𝑢 = ∅ → (∀𝑥𝑢 𝜓 ↔ ∀𝑥 ∈ ∅ 𝜓))
42, 3anbi12d 743 . . . . 5 (𝑢 = ∅ → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓)))
54exbidv 1837 . . . 4 (𝑢 = ∅ → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓)))
61, 5imbi12d 333 . . 3 (𝑢 = ∅ → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))))
7 raleq 3115 . . . 4 (𝑢 = 𝑤 → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥𝑤𝑦𝐵 𝜑))
8 feq2 5940 . . . . . 6 (𝑢 = 𝑤 → (𝑓:𝑢𝐵𝑓:𝑤𝐵))
9 raleq 3115 . . . . . 6 (𝑢 = 𝑤 → (∀𝑥𝑢 𝜓 ↔ ∀𝑥𝑤 𝜓))
108, 9anbi12d 743 . . . . 5 (𝑢 = 𝑤 → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
1110exbidv 1837 . . . 4 (𝑢 = 𝑤 → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
127, 11imbi12d 333 . . 3 (𝑢 = 𝑤 → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓))))
13 raleq 3115 . . . 4 (𝑢 = (𝑤 ∪ {𝑧}) → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑))
14 feq2 5940 . . . . . . 7 (𝑢 = (𝑤 ∪ {𝑧}) → (𝑓:𝑢𝐵𝑓:(𝑤 ∪ {𝑧})⟶𝐵))
15 raleq 3115 . . . . . . 7 (𝑢 = (𝑤 ∪ {𝑧}) → (∀𝑥𝑢 𝜓 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓))
1614, 15anbi12d 743 . . . . . 6 (𝑢 = (𝑤 ∪ {𝑧}) → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓)))
1716exbidv 1837 . . . . 5 (𝑢 = (𝑤 ∪ {𝑧}) → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓)))
18 feq1 5939 . . . . . . 7 (𝑓 = 𝑔 → (𝑓:(𝑤 ∪ {𝑧})⟶𝐵𝑔:(𝑤 ∪ {𝑧})⟶𝐵))
19 fvex 6113 . . . . . . . . . 10 (𝑓𝑥) ∈ V
20 ac6sfi.1 . . . . . . . . . 10 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
2119, 20sbcie 3437 . . . . . . . . 9 ([(𝑓𝑥) / 𝑦]𝜑𝜓)
22 fveq1 6102 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
2322sbceq1d 3407 . . . . . . . . 9 (𝑓 = 𝑔 → ([(𝑓𝑥) / 𝑦]𝜑[(𝑔𝑥) / 𝑦]𝜑))
2421, 23syl5bbr 273 . . . . . . . 8 (𝑓 = 𝑔 → (𝜓[(𝑔𝑥) / 𝑦]𝜑))
2524ralbidv 2969 . . . . . . 7 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
2618, 25anbi12d 743 . . . . . 6 (𝑓 = 𝑔 → ((𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓) ↔ (𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
2726cbvexv 2263 . . . . 5 (∃𝑓(𝑓:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})𝜓) ↔ ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
2817, 27syl6bb 275 . . . 4 (𝑢 = (𝑤 ∪ {𝑧}) → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
2913, 28imbi12d 333 . . 3 (𝑢 = (𝑤 ∪ {𝑧}) → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
30 raleq 3115 . . . 4 (𝑢 = 𝐴 → (∀𝑥𝑢𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑))
31 feq2 5940 . . . . . 6 (𝑢 = 𝐴 → (𝑓:𝑢𝐵𝑓:𝐴𝐵))
32 raleq 3115 . . . . . 6 (𝑢 = 𝐴 → (∀𝑥𝑢 𝜓 ↔ ∀𝑥𝐴 𝜓))
3331, 32anbi12d 743 . . . . 5 (𝑢 = 𝐴 → ((𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
3433exbidv 1837 . . . 4 (𝑢 = 𝐴 → (∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓) ↔ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
3530, 34imbi12d 333 . . 3 (𝑢 = 𝐴 → ((∀𝑥𝑢𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑢𝐵 ∧ ∀𝑥𝑢 𝜓)) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))))
36 f0 5999 . . . 4 ∅:∅⟶𝐵
37 0ex 4718 . . . . 5 ∅ ∈ V
38 ral0 4028 . . . . . . 7 𝑥 ∈ ∅ 𝜓
3938biantru 525 . . . . . 6 (𝑓:∅⟶𝐵 ↔ (𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
40 feq1 5939 . . . . . 6 (𝑓 = ∅ → (𝑓:∅⟶𝐵 ↔ ∅:∅⟶𝐵))
4139, 40syl5bbr 273 . . . . 5 (𝑓 = ∅ → ((𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓) ↔ ∅:∅⟶𝐵))
4237, 41spcev 3273 . . . 4 (∅:∅⟶𝐵 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
4336, 42mp1i 13 . . 3 (∀𝑥 ∈ ∅ ∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:∅⟶𝐵 ∧ ∀𝑥 ∈ ∅ 𝜓))
44 ssun1 3738 . . . . . . 7 𝑤 ⊆ (𝑤 ∪ {𝑧})
45 ssralv 3629 . . . . . . 7 (𝑤 ⊆ (𝑤 ∪ {𝑧}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥𝑤𝑦𝐵 𝜑))
4644, 45ax-mp 5 . . . . . 6 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥𝑤𝑦𝐵 𝜑)
4746imim1i 61 . . . . 5 ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)))
48 ssun2 3739 . . . . . . . . 9 {𝑧} ⊆ (𝑤 ∪ {𝑧})
49 ssralv 3629 . . . . . . . . 9 ({𝑧} ⊆ (𝑤 ∪ {𝑧}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑))
5048, 49ax-mp 5 . . . . . . . 8 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑)
51 vex 3176 . . . . . . . . . 10 𝑧 ∈ V
52 ralsnsg 4163 . . . . . . . . . 10 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑))
5351, 52ax-mp 5 . . . . . . . . 9 (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑[𝑧 / 𝑥]𝑦𝐵 𝜑)
54 sbcrex 3481 . . . . . . . . 9 ([𝑧 / 𝑥]𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
5553, 54bitri 263 . . . . . . . 8 (∀𝑥 ∈ {𝑧}∃𝑦𝐵 𝜑 ↔ ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
5650, 55sylib 207 . . . . . . 7 (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑦𝐵 [𝑧 / 𝑥]𝜑)
57 nfv 1830 . . . . . . . 8 𝑦 ¬ 𝑧𝑤
58 nfv 1830 . . . . . . . . 9 𝑦𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)
59 nfv 1830 . . . . . . . . . . 11 𝑦 𝑔:(𝑤 ∪ {𝑧})⟶𝐵
60 nfcv 2751 . . . . . . . . . . . 12 𝑦(𝑤 ∪ {𝑧})
61 nfsbc1v 3422 . . . . . . . . . . . 12 𝑦[(𝑔𝑥) / 𝑦]𝜑
6260, 61nfral 2929 . . . . . . . . . . 11 𝑦𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑
6359, 62nfan 1816 . . . . . . . . . 10 𝑦(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)
6463nfex 2140 . . . . . . . . 9 𝑦𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)
6558, 64nfim 1813 . . . . . . . 8 𝑦(∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
66 simprl 790 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑓:𝑤𝐵)
67 vex 3176 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
6851, 67f1osn 6088 . . . . . . . . . . . . . . 15 {⟨𝑧, 𝑦⟩}:{𝑧}–1-1-onto→{𝑦}
69 f1of 6050 . . . . . . . . . . . . . . 15 ({⟨𝑧, 𝑦⟩}:{𝑧}–1-1-onto→{𝑦} → {⟨𝑧, 𝑦⟩}:{𝑧}⟶{𝑦})
7068, 69mp1i 13 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {⟨𝑧, 𝑦⟩}:{𝑧}⟶{𝑦})
71 simpl2 1058 . . . . . . . . . . . . . . 15 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑦𝐵)
7271snssd 4281 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {𝑦} ⊆ 𝐵)
7370, 72fssd 5970 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → {⟨𝑧, 𝑦⟩}:{𝑧}⟶𝐵)
74 simpl1 1057 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ¬ 𝑧𝑤)
75 disjsn 4192 . . . . . . . . . . . . . 14 ((𝑤 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑤)
7674, 75sylibr 223 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (𝑤 ∩ {𝑧}) = ∅)
77 fun2 5980 . . . . . . . . . . . . 13 (((𝑓:𝑤𝐵 ∧ {⟨𝑧, 𝑦⟩}:{𝑧}⟶𝐵) ∧ (𝑤 ∩ {𝑧}) = ∅) → (𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵)
7866, 73, 76, 77syl21anc 1317 . . . . . . . . . . . 12 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵)
79 simprr 792 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥𝑤 𝜓)
80 eleq1a 2683 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑤 → (𝑧 = 𝑥𝑧𝑤))
8180necon3bd 2796 . . . . . . . . . . . . . . . . . 18 (𝑥𝑤 → (¬ 𝑧𝑤𝑧𝑥))
8281impcom 445 . . . . . . . . . . . . . . . . 17 ((¬ 𝑧𝑤𝑥𝑤) → 𝑧𝑥)
83 fvunsn 6350 . . . . . . . . . . . . . . . . 17 (𝑧𝑥 → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥))
84 dfsbcq 3404 . . . . . . . . . . . . . . . . . 18 (((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥) → ([((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑[(𝑓𝑥) / 𝑦]𝜑))
8584, 21syl6rbb 276 . . . . . . . . . . . . . . . . 17 (((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = (𝑓𝑥) → (𝜓[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8682, 83, 853syl 18 . . . . . . . . . . . . . . . 16 ((¬ 𝑧𝑤𝑥𝑤) → (𝜓[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8786ralbidva 2968 . . . . . . . . . . . . . . 15 𝑧𝑤 → (∀𝑥𝑤 𝜓 ↔ ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8874, 87syl 17 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥𝑤 𝜓 ↔ ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
8979, 88mpbid 221 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
90 simpl3 1059 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → [𝑧 / 𝑥]𝜑)
91 ffun 5961 . . . . . . . . . . . . . . . . 17 ((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 → Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}))
92 ssun2 3739 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, 𝑦⟩} ⊆ (𝑓 ∪ {⟨𝑧, 𝑦⟩})
93 vsnid 4156 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ {𝑧}
9467dmsnop 5527 . . . . . . . . . . . . . . . . . . 19 dom {⟨𝑧, 𝑦⟩} = {𝑧}
9593, 94eleqtrri 2687 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ dom {⟨𝑧, 𝑦⟩}
96 funssfv 6119 . . . . . . . . . . . . . . . . . 18 ((Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∧ {⟨𝑧, 𝑦⟩} ⊆ (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∧ 𝑧 ∈ dom {⟨𝑧, 𝑦⟩}) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9792, 95, 96mp3an23 1408 . . . . . . . . . . . . . . . . 17 (Fun (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9878, 91, 973syl 18 . . . . . . . . . . . . . . . 16 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) = ({⟨𝑧, 𝑦⟩}‘𝑧))
9951, 67fvsn 6351 . . . . . . . . . . . . . . . 16 ({⟨𝑧, 𝑦⟩}‘𝑧) = 𝑦
10098, 99syl6req 2661 . . . . . . . . . . . . . . 15 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧))
101 ralsnsg 4163 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ V → (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑))
10251, 101ax-mp 5 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ {𝑧}𝜑[𝑧 / 𝑥]𝜑)
103 elsni 4142 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑧} → 𝑥 = 𝑧)
104103fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ {𝑧} → ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧))
105104eqeq2d 2620 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑧} → (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) ↔ 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧)))
106105biimparc 503 . . . . . . . . . . . . . . . . . 18 ((𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) ∧ 𝑥 ∈ {𝑧}) → 𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥))
107 sbceq1a 3413 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) → (𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
108106, 107syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) ∧ 𝑥 ∈ {𝑧}) → (𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
109108ralbidva 2968 . . . . . . . . . . . . . . . 16 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) → (∀𝑥 ∈ {𝑧}𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
110102, 109syl5bbr 273 . . . . . . . . . . . . . . 15 (𝑦 = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑧) → ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
111100, 110syl 17 . . . . . . . . . . . . . 14 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
11290, 111mpbid 221 . . . . . . . . . . . . 13 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
113 ralun 3757 . . . . . . . . . . . . 13 ((∀𝑥𝑤 [((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑 ∧ ∀𝑥 ∈ {𝑧}[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑) → ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
11489, 112, 113syl2anc 691 . . . . . . . . . . . 12 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)
115 vex 3176 . . . . . . . . . . . . . 14 𝑓 ∈ V
116 snex 4835 . . . . . . . . . . . . . 14 {⟨𝑧, 𝑦⟩} ∈ V
117115, 116unex 6854 . . . . . . . . . . . . 13 (𝑓 ∪ {⟨𝑧, 𝑦⟩}) ∈ V
118 feq1 5939 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ↔ (𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵))
119 fveq1 6102 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (𝑔𝑥) = ((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥))
120119sbceq1d 3407 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ([(𝑔𝑥) / 𝑦]𝜑[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
121120ralbidv 2969 . . . . . . . . . . . . . 14 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑 ↔ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑))
122118, 121anbi12d 743 . . . . . . . . . . . . 13 (𝑔 = (𝑓 ∪ {⟨𝑧, 𝑦⟩}) → ((𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑) ↔ ((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑)))
123117, 122spcev 3273 . . . . . . . . . . . 12 (((𝑓 ∪ {⟨𝑧, 𝑦⟩}):(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[((𝑓 ∪ {⟨𝑧, 𝑦⟩})‘𝑥) / 𝑦]𝜑) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
12478, 114, 123syl2anc 691 . . . . . . . . . . 11 (((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) ∧ (𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))
125124ex 449 . . . . . . . . . 10 ((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) → ((𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
126125exlimdv 1848 . . . . . . . . 9 ((¬ 𝑧𝑤𝑦𝐵[𝑧 / 𝑥]𝜑) → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))
1271263exp 1256 . . . . . . . 8 𝑧𝑤 → (𝑦𝐵 → ([𝑧 / 𝑥]𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑)))))
12857, 65, 127rexlimd 3008 . . . . . . 7 𝑧𝑤 → (∃𝑦𝐵 [𝑧 / 𝑥]𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
12956, 128syl5 33 . . . . . 6 𝑧𝑤 → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → (∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓) → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
130129a2d 29 . . . . 5 𝑧𝑤 → ((∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
13147, 130syl5 33 . . . 4 𝑧𝑤 → ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
132131adantl 481 . . 3 ((𝑤 ∈ Fin ∧ ¬ 𝑧𝑤) → ((∀𝑥𝑤𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑤𝐵 ∧ ∀𝑥𝑤 𝜓)) → (∀𝑥 ∈ (𝑤 ∪ {𝑧})∃𝑦𝐵 𝜑 → ∃𝑔(𝑔:(𝑤 ∪ {𝑧})⟶𝐵 ∧ ∀𝑥 ∈ (𝑤 ∪ {𝑧})[(𝑔𝑥) / 𝑦]𝜑))))
1336, 12, 29, 35, 43, 132findcard2s 8086 . 2 (𝐴 ∈ Fin → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
134133imp 444 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑦𝐵 𝜑) → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  [wsbc 3402  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cop 4131  dom cdm 5038  Fun wfun 5798  wf 5800  1-1-ontowf1o 5803  cfv 5804  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-er 7629  df-en 7842  df-fin 7845
This theorem is referenced by:  fissuni  8154  fipreima  8155  indexfi  8157  finacn  8756  axcc4dom  9146  ttukeylem6  9219  firest  15916  ablfaclem3  18309  ablfac2  18311  cmpcovf  21004  cmpsub  21013  tgcmp  21014  hauscmplem  21019  comppfsc  21145  ptcnplem  21234  alexsubALTlem3  21663  alexsubALT  21665  tsmsxplem1  21766  ovolicc2lem5  23096  ovolicc2  23097  limciun  23464  cvmliftlem15  30534  matunitlindflem2  32576  ptrecube  32579  istotbnd3  32740  sstotbnd2  32743  sstotbnd  32744  prdsbnd  32762  prdstotbnd  32763  heiborlem1  32780  heibor  32790  kelac1  36651  hbt  36719
  Copyright terms: Public domain W3C validator