Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac3 Structured version   Visualization version   GIF version

Theorem ac3 9167
 Description: Axiom of Choice using abbreviations. The logical equivalence to ax-ac 9164 can be established by chaining aceq0 8824 and aceq2 8825. A standard textbook version of AC is derived from this one in dfac2a 8835, and this version of AC is derived from the textbook version in dfac2 8836. The following sketch will help you understand this version of the axiom. Given any set 𝑥, the axiom says that there exists a 𝑦 that is a collection of unordered pairs, one pair for each nonempty member of 𝑥. One entry in the pair is the member of 𝑥, and the other entry is some arbitrary member of that member of 𝑥. Using the Axiom of Regularity, we can show that 𝑦 is really a set of ordered pairs, very similar to the ordered pair construction opthreg 8398. The key theorem for this (used in the proof of dfac2 8836) is preleq 8397. With this modified definition of ordered pair, it can be seen that 𝑦 is actually a choice function on the members of 𝑥. For example, suppose 𝑥 = {{1, 2}, {1, 3}, {2, 3, 4}}. Let us try 𝑦 = {{{1, 2}, 1}, {{1, 3}, 1}, {{2, 3, 4}, 2}}. For the member (of 𝑥) 𝑧 = {1, 2}, the only assignment to 𝑤 and 𝑣 that satisfies the axiom is 𝑤 = 1 and 𝑣 = {{1, 2}, 1}, so there is exactly one 𝑤 as required. We verify the other two members of 𝑥 similarly. Thus, 𝑦 satisfies the axiom. Using our modified ordered pair definition, we can say that 𝑦 corresponds to the choice function {⟨{1, 2}, 1⟩, ⟨{1, 3}, 1⟩, ⟨{2, 3, 4}, 2⟩}. Of course other choices for 𝑦 will also satisfy the axiom, for example 𝑦 = {{{1, 2}, 2}, {{1, 3}, 1}, {{2, 3, 4}, 4}}. What AC tells us is that there exists at least one such 𝑦, but it doesn't tell us which one. (New usage is discouraged.) (Contributed by NM, 19-Jul-1996.)
Assertion
Ref Expression
ac3 𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣

Proof of Theorem ac3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ac2 9166 . 2 𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢)
2 aceq2 8825 . 2 (∃𝑦𝑧𝑥𝑤𝑧 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) ↔ ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
31, 2mpbi 219 1 𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∃wex 1695   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  ∃!wreu 2898  ∅c0 3874 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-ac 9164 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-v 3175  df-dif 3543  df-nul 3875 This theorem is referenced by:  axac2  9171
 Copyright terms: Public domain W3C validator