Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  absval Structured version   Visualization version   GIF version

Theorem absval 13826
 Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))

Proof of Theorem absval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . 4 (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴))
2 oveq12 6558 . . . 4 ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴)))
31, 2mpdan 699 . . 3 (𝑥 = 𝐴 → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴)))
43fveq2d 6107 . 2 (𝑥 = 𝐴 → (√‘(𝑥 · (∗‘𝑥))) = (√‘(𝐴 · (∗‘𝐴))))
5 df-abs 13824 . 2 abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
6 fvex 6113 . 2 (√‘(𝐴 · (∗‘𝐴))) ∈ V
74, 5, 6fvmpt 6191 1 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  ℂcc 9813   · cmul 9820  ∗ccj 13684  √csqrt 13821  abscabs 13822 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-abs 13824 This theorem is referenced by:  absneg  13865  abscl  13866  abscj  13867  absvalsq  13868  absval2  13872  abs0  13873  absi  13874  absge0  13875  absrpcl  13876  absmul  13882  absid  13884  absre  13889  absf  13925  cphabscl  22793  cphipipcj  22808  tchcphlem2  22843  siii  27092  norm-iii-i  27380  absfico  38405
 Copyright terms: Public domain W3C validator