MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absrdbnd Structured version   Visualization version   GIF version

Theorem absrdbnd 13929
Description: Bound on the absolute value of a real number rounded to the nearest integer. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Sep-2015.)
Assertion
Ref Expression
absrdbnd (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))

Proof of Theorem absrdbnd
StepHypRef Expression
1 halfre 11123 . . . . . . . 8 (1 / 2) ∈ ℝ
2 readdcl 9898 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝐴 + (1 / 2)) ∈ ℝ)
31, 2mpan2 703 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + (1 / 2)) ∈ ℝ)
4 reflcl 12459 . . . . . . 7 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
53, 4syl 17 . . . . . 6 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
65recnd 9947 . . . . 5 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
7 abscl 13866 . . . . 5 ((⌊‘(𝐴 + (1 / 2))) ∈ ℂ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
86, 7syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℝ)
9 recn 9905 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
10 abscl 13866 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
119, 10syl 17 . . . 4 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
12 1re 9918 . . . . 5 1 ∈ ℝ
1312a1i 11 . . . 4 (𝐴 ∈ ℝ → 1 ∈ ℝ)
148, 11resubcld 10337 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ∈ ℝ)
15 resubcl 10224 . . . . . . . 8 (((⌊‘(𝐴 + (1 / 2))) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
165, 15mpancom 700 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℝ)
1716recnd 9947 . . . . . 6 (𝐴 ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ)
18 abscl 13866 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) − 𝐴) ∈ ℂ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
1917, 18syl 17 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ∈ ℝ)
20 abs2dif 13920 . . . . . 6 (((⌊‘(𝐴 + (1 / 2))) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
216, 9, 20syl2anc 691 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)))
221a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ∈ ℝ)
23 rddif 13928 . . . . . 6 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ (1 / 2))
24 halflt1 11127 . . . . . . . 8 (1 / 2) < 1
251, 12, 24ltleii 10039 . . . . . . 7 (1 / 2) ≤ 1
2625a1i 11 . . . . . 6 (𝐴 ∈ ℝ → (1 / 2) ≤ 1)
2719, 22, 13, 23, 26letrd 10073 . . . . 5 (𝐴 ∈ ℝ → (abs‘((⌊‘(𝐴 + (1 / 2))) − 𝐴)) ≤ 1)
2814, 19, 13, 21, 27letrd 10073 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − (abs‘𝐴)) ≤ 1)
298, 11, 13, 28subled 10509 . . 3 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴))
303flcld 12461 . . . . . . 7 (𝐴 ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
31 nn0abscl 13900 . . . . . . 7 ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3230, 31syl 17 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℕ0)
3332nn0zd 11356 . . . . 5 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ)
34 peano2zm 11297 . . . . 5 ((abs‘(⌊‘(𝐴 + (1 / 2)))) ∈ ℤ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
3533, 34syl 17 . . . 4 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ)
36 flge 12468 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ∈ ℤ) → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3711, 35, 36syl2anc 691 . . 3 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (abs‘𝐴) ↔ ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴))))
3829, 37mpbid 221 . 2 (𝐴 ∈ ℝ → ((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)))
39 reflcl 12459 . . . 4 ((abs‘𝐴) ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
4011, 39syl 17 . . 3 (𝐴 ∈ ℝ → (⌊‘(abs‘𝐴)) ∈ ℝ)
418, 13, 40lesubaddd 10503 . 2 (𝐴 ∈ ℝ → (((abs‘(⌊‘(𝐴 + (1 / 2)))) − 1) ≤ (⌊‘(abs‘𝐴)) ↔ (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1)))
4238, 41mpbid 221 1 (𝐴 ∈ ℝ → (abs‘(⌊‘(𝐴 + (1 / 2)))) ≤ ((⌊‘(abs‘𝐴)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818  cle 9954  cmin 10145   / cdiv 10563  2c2 10947  0cn0 11169  cz 11254  cfl 12453  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator