Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abslem2 Structured version   Visualization version   GIF version

Theorem abslem2 13927
 Description: Lemma involving absolute values. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
abslem2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴)))

Proof of Theorem abslem2
StepHypRef Expression
1 absvalsq 13868 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
21adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
3 abscl 13866 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
43adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
54recnd 9947 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
65sqvald 12867 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
72, 6eqtr3d 2646 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (∗‘𝐴)) = ((abs‘𝐴) · (abs‘𝐴)))
87oveq1d 6564 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴)))
9 simpl 472 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
109cjcld 13784 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
11 abs00 13877 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1211necon3bid 2826 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1312biimpar 501 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
149, 10, 5, 13div23d 10717 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = ((𝐴 / (abs‘𝐴)) · (∗‘𝐴)))
155, 5, 13divcan3d 10685 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((abs‘𝐴) · (abs‘𝐴)) / (abs‘𝐴)) = (abs‘𝐴))
168, 14, 153eqtr3d 2652 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / (abs‘𝐴)) · (∗‘𝐴)) = (abs‘𝐴))
1716fveq2d 6107 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (∗‘(abs‘𝐴)))
189, 5, 13divcld 10680 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
1918, 10cjmuld 13809 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴))))
209cjcjd 13787 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(∗‘𝐴)) = 𝐴)
2120oveq2d 6565 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · (∗‘(∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴))
2219, 21eqtrd 2644 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴))
234cjred 13814 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘(abs‘𝐴)) = (abs‘𝐴))
2417, 22, 233eqtr3d 2652 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) = (abs‘𝐴))
2524, 16oveq12d 6567 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = ((abs‘𝐴) + (abs‘𝐴)))
2652timesd 11152 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (2 · (abs‘𝐴)) = ((abs‘𝐴) + (abs‘𝐴)))
2725, 26eqtr4d 2647 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘(𝐴 / (abs‘𝐴))) · 𝐴) + ((𝐴 / (abs‘𝐴)) · (∗‘𝐴))) = (2 · (abs‘𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815   + caddc 9818   · cmul 9820   / cdiv 10563  2c2 10947  ↑cexp 12722  ∗ccj 13684  abscabs 13822 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824 This theorem is referenced by:  bcsiALT  27420
 Copyright terms: Public domain W3C validator