MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Structured version   Visualization version   GIF version

Theorem abs1m 13923
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 6103 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
2 abs0 13873 . . . . . 6 (abs‘0) = 0
31, 2syl6eq 2660 . . . . 5 (𝐴 = 0 → (abs‘𝐴) = 0)
4 oveq2 6557 . . . . 5 (𝐴 = 0 → (𝑥 · 𝐴) = (𝑥 · 0))
53, 4eqeq12d 2625 . . . 4 (𝐴 = 0 → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ 0 = (𝑥 · 0)))
65anbi2d 736 . . 3 (𝐴 = 0 → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
76rexbidv 3034 . 2 (𝐴 = 0 → (∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
8 simpl 472 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
98cjcld 13784 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
10 abscl 13866 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1110adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
1211recnd 9947 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
13 abs00 13877 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1413necon3bid 2826 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1514biimpar 501 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
169, 12, 15divcld 10680 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ)
17 absdiv 13883 . . . . 5 (((∗‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
189, 12, 15, 17syl3anc 1318 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
19 abscj 13867 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
2019adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(∗‘𝐴)) = (abs‘𝐴))
21 absidm 13911 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2221adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2320, 22oveq12d 6567 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))) = ((abs‘𝐴) / (abs‘𝐴)))
2412, 15dividd 10678 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
2518, 23, 243eqtrd 2648 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1)
268, 9, 12, 15divassd 10715 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
2712sqvald 12867 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
28 absvalsq 13868 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
2928adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
3027, 29eqtr3d 2646 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (abs‘𝐴)) = (𝐴 · (∗‘𝐴)))
3112, 12, 15, 30mvllmuld 10736 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)))
3216, 8mulcomd 9940 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘𝐴) / (abs‘𝐴)) · 𝐴) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
3326, 31, 323eqtr4d 2654 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
34 fveq2 6103 . . . . . 6 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (abs‘𝑥) = (abs‘((∗‘𝐴) / (abs‘𝐴))))
3534eqeq1d 2612 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝑥) = 1 ↔ (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1))
36 oveq1 6556 . . . . . 6 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (𝑥 · 𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
3736eqeq2d 2620 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴)))
3835, 37anbi12d 743 . . . 4 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))))
3938rspcev 3282 . . 3 ((((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ ∧ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
4016, 25, 33, 39syl12anc 1316 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
41 ax-icn 9874 . . . 4 i ∈ ℂ
42 absi 13874 . . . . 5 (abs‘i) = 1
43 it0e0 11131 . . . . . 6 (i · 0) = 0
4443eqcomi 2619 . . . . 5 0 = (i · 0)
4542, 44pm3.2i 470 . . . 4 ((abs‘i) = 1 ∧ 0 = (i · 0))
46 fveq2 6103 . . . . . . 7 (𝑥 = i → (abs‘𝑥) = (abs‘i))
4746eqeq1d 2612 . . . . . 6 (𝑥 = i → ((abs‘𝑥) = 1 ↔ (abs‘i) = 1))
48 oveq1 6556 . . . . . . 7 (𝑥 = i → (𝑥 · 0) = (i · 0))
4948eqeq2d 2620 . . . . . 6 (𝑥 = i → (0 = (𝑥 · 0) ↔ 0 = (i · 0)))
5047, 49anbi12d 743 . . . . 5 (𝑥 = i → (((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)) ↔ ((abs‘i) = 1 ∧ 0 = (i · 0))))
5150rspcev 3282 . . . 4 ((i ∈ ℂ ∧ ((abs‘i) = 1 ∧ 0 = (i · 0))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
5241, 45, 51mp2an 704 . . 3 𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))
5352a1i 11 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
547, 40, 53pm2.61ne 2867 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   · cmul 9820   / cdiv 10563  2c2 10947  cexp 12722  ccj 13684  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator