MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablomuldiv Structured version   Visualization version   GIF version

Theorem ablomuldiv 26790
Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablomuldiv ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))

Proof of Theorem ablomuldiv
StepHypRef Expression
1 abldiv.1 . . . . 5 𝑋 = ran 𝐺
21ablocom 26786 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
323adant3r3 1268 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
43oveq1d 6564 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐵𝐺𝐴)𝐷𝐶))
5 3ancoma 1038 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐵𝑋𝐴𝑋𝐶𝑋))
6 ablogrpo 26785 . . . 4 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
7 abldiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
81, 7grpomuldivass 26779 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐴𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
96, 8sylan 487 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐵𝑋𝐴𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
105, 9sylan2b 491 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
11 simpr2 1061 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
121, 7grpodivcl 26777 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
136, 12syl3an1 1351 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
14133adant3r2 1267 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ 𝑋)
1511, 14jca 553 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋))
161ablocom 26786 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
17163expb 1258 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
1815, 17syldan 486 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
194, 10, 183eqtrd 2648 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  ran crn 5039  cfv 5804  (class class class)co 6549  GrpOpcgr 26727   /𝑔 cgs 26730  AbelOpcablo 26782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783
This theorem is referenced by:  ablodivdiv  26791  nvaddsub  26894  ablo4pnp  32849
  Copyright terms: Public domain W3C validator