Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abladdsub Structured version   Visualization version   GIF version

Theorem abladdsub 18043
 Description: Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
abladdsub ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))

Proof of Theorem abladdsub
StepHypRef Expression
1 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
2 ablsubadd.p . . . . 5 + = (+g𝐺)
31, 2ablcom 18033 . . . 4 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
433adant3r3 1268 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
54oveq1d 6564 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑌 + 𝑋) 𝑍))
6 ablgrp 18021 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
76adantr 480 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
8 simpr2 1061 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
9 simpr1 1060 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
10 simpr3 1062 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
11 ablsubadd.m . . . 4 = (-g𝐺)
121, 2, 11grpaddsubass 17328 . . 3 ((𝐺 ∈ Grp ∧ (𝑌𝐵𝑋𝐵𝑍𝐵)) → ((𝑌 + 𝑋) 𝑍) = (𝑌 + (𝑋 𝑍)))
137, 8, 9, 10, 12syl13anc 1320 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 + 𝑋) 𝑍) = (𝑌 + (𝑋 𝑍)))
14 simpl 472 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Abel)
151, 11grpsubcl 17318 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → (𝑋 𝑍) ∈ 𝐵)
167, 9, 10, 15syl3anc 1318 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑍) ∈ 𝐵)
171, 2ablcom 18033 . . 3 ((𝐺 ∈ Abel ∧ 𝑌𝐵 ∧ (𝑋 𝑍) ∈ 𝐵) → (𝑌 + (𝑋 𝑍)) = ((𝑋 𝑍) + 𝑌))
1814, 8, 16, 17syl3anc 1318 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 + (𝑋 𝑍)) = ((𝑋 𝑍) + 𝑌))
195, 13, 183eqtrd 2648 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) 𝑍) = ((𝑋 𝑍) + 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  -gcsg 17247  Abelcabl 18017 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-cmn 18018  df-abl 18019 This theorem is referenced by:  ablpncan2  18044  ablsubsub  18046  ip2subdi  19808
 Copyright terms: Public domain W3C validator