Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > abfmpel | Structured version Visualization version GIF version |
Description: Membership in an element of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 19-Oct-2016.) |
Ref | Expression |
---|---|
abfmpel.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) |
abfmpel.2 | ⊢ {𝑦 ∣ 𝜑} ∈ V |
abfmpel.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
abfmpel | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abfmpel.2 | . . . . . . 7 ⊢ {𝑦 ∣ 𝜑} ∈ V | |
2 | 1 | csbex 4721 | . . . . . 6 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V |
3 | abfmpel.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∣ 𝜑}) | |
4 | 3 | fvmpts 6194 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} ∈ V) → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
5 | 2, 4 | mpan2 703 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
6 | csbab 3960 | . . . . 5 ⊢ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑} | |
7 | 5, 6 | syl6eq 2660 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = {𝑦 ∣ [𝐴 / 𝑥]𝜑}) |
8 | 7 | eleq2d 2673 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑})) |
10 | simpl 472 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → 𝐴 ∈ 𝑉) | |
11 | abfmpel.3 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
12 | 11 | ancoms 468 | . . . . . . . 8 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
13 | 12 | adantll 746 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
14 | 10, 13 | sbcied 3439 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
15 | 14 | ex 449 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
16 | 15 | alrimiv 1842 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) |
17 | elabgt 3316 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑦(𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓))) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) | |
18 | 16, 17 | sylan2 490 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
19 | 18 | ancoms 468 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝜑} ↔ 𝜓)) |
20 | 9, 19 | bitrd 267 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝐹‘𝐴) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 = wceq 1475 ∈ wcel 1977 {cab 2596 Vcvv 3173 [wsbc 3402 ⦋csb 3499 ↦ cmpt 4643 ‘cfv 5804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 |
This theorem is referenced by: issiga 29501 ismeas 29589 |
Copyright terms: Public domain | W3C validator |