Mathbox for Giovanni Mascellani < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abeq12 Structured version   Visualization version   GIF version

Theorem abeq12 33134
 Description: Equality deduction for class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Assertion
Ref Expression
abeq12 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})

Proof of Theorem abeq12
StepHypRef Expression
1 abbi 2724 . 2 (∀𝑥(𝜑𝜓) ↔ {𝑥𝜑} = {𝑥𝜓})
21biimpi 205 1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} = {𝑥𝜓})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∀wal 1473   = wceq 1475  {cab 2596 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator