MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem3 Structured version   Visualization version   GIF version

Theorem aaliou3lem3 23903
Description: Lemma for aaliou3 23910. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
aaliou3lem.b 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
Assertion
Ref Expression
aaliou3lem3 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Distinct variable groups:   𝐹,𝑏,𝑐   𝐴,𝑎,𝑏,𝑐   𝐺,𝑎,𝑏
Allowed substitution hints:   𝐹(𝑎)   𝐺(𝑐)

Proof of Theorem aaliou3lem3
StepHypRef Expression
1 eqid 2610 . . 3 (ℤ𝐴) = (ℤ𝐴)
2 nnz 11276 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
3 uzid 11578 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
42, 3syl 17 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ𝐴))
5 aaliou3lem.a . . . 4 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
65aaliou3lem1 23901 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℝ)
7 aaliou3lem.b . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
85, 7aaliou3lem2 23902 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ (0(,](𝐺𝑏)))
9 0xr 9965 . . . . . 6 0 ∈ ℝ*
10 elioc2 12107 . . . . . 6 ((0 ∈ ℝ* ∧ (𝐺𝑏) ∈ ℝ) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
119, 6, 10sylancr 694 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ (0(,](𝐺𝑏)) ↔ ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏))))
128, 11mpbid 221 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → ((𝐹𝑏) ∈ ℝ ∧ 0 < (𝐹𝑏) ∧ (𝐹𝑏) ≤ (𝐺𝑏)))
1312simp1d 1066 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ)
14 halfcn 11124 . . . . . 6 (1 / 2) ∈ ℂ
1514a1i 11 . . . . 5 (𝐴 ∈ ℕ → (1 / 2) ∈ ℂ)
16 halfre 11123 . . . . . . . . 9 (1 / 2) ∈ ℝ
17 halfgt0 11125 . . . . . . . . 9 0 < (1 / 2)
1816, 17elrpii 11711 . . . . . . . 8 (1 / 2) ∈ ℝ+
19 rprege0 11723 . . . . . . . 8 ((1 / 2) ∈ ℝ+ → ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)))
20 absid 13884 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
2118, 19, 20mp2b 10 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
22 halflt1 11127 . . . . . . 7 (1 / 2) < 1
2321, 22eqbrtri 4604 . . . . . 6 (abs‘(1 / 2)) < 1
2423a1i 11 . . . . 5 (𝐴 ∈ ℕ → (abs‘(1 / 2)) < 1)
25 2rp 11713 . . . . . . 7 2 ∈ ℝ+
26 nnnn0 11176 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
27 faccl 12932 . . . . . . . . . 10 (𝐴 ∈ ℕ0 → (!‘𝐴) ∈ ℕ)
2826, 27syl 17 . . . . . . . . 9 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
2928nnzd 11357 . . . . . . . 8 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
3029znegcld 11360 . . . . . . 7 (𝐴 ∈ ℕ → -(!‘𝐴) ∈ ℤ)
31 rpexpcl 12741 . . . . . . 7 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
3225, 30, 31sylancr 694 . . . . . 6 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℝ+)
3332rpcnd 11750 . . . . 5 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℂ)
342, 15, 24, 33, 5geolim3 23898 . . . 4 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
35 seqex 12665 . . . . 5 seq𝐴( + , 𝐺) ∈ V
36 ovex 6577 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) ∈ V
3735, 36breldm 5251 . . . 4 (seq𝐴( + , 𝐺) ⇝ ((2↑-(!‘𝐴)) / (1 − (1 / 2))) → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3834, 37syl 17 . . 3 (𝐴 ∈ ℕ → seq𝐴( + , 𝐺) ∈ dom ⇝ )
3912simp2d 1067 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 < (𝐹𝑏))
4013, 39elrpd 11745 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ∈ ℝ+)
4140rpge0d 11752 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → 0 ≤ (𝐹𝑏))
4212simp3d 1068 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) ≤ (𝐺𝑏))
431, 4, 6, 13, 38, 41, 42cvgcmp 14389 . 2 (𝐴 ∈ ℕ → seq𝐴( + , 𝐹) ∈ dom ⇝ )
44 eqidd 2611 . . 3 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐹𝑏) = (𝐹𝑏))
451, 1, 4, 44, 40, 43isumrpcl 14414 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+)
46 eqidd 2611 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) = (𝐺𝑏))
471, 2, 44, 13, 46, 6, 42, 43, 38isumle 14415 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏))
486recnd 9947 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (ℤ𝐴)) → (𝐺𝑏) ∈ ℂ)
491, 2, 46, 48, 34isumclim 14330 . . . 4 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = ((2↑-(!‘𝐴)) / (1 − (1 / 2))))
50 1mhlfehlf 11128 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
5150oveq2i 6560 . . . . 5 ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = ((2↑-(!‘𝐴)) / (1 / 2))
52 2cn 10968 . . . . . . . 8 2 ∈ ℂ
53 mulcl 9899 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5433, 52, 53sylancl 693 . . . . . . 7 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) · 2) ∈ ℂ)
5554div1d 10672 . . . . . 6 (𝐴 ∈ ℕ → (((2↑-(!‘𝐴)) · 2) / 1) = ((2↑-(!‘𝐴)) · 2))
56 1rp 11712 . . . . . . . . 9 1 ∈ ℝ+
57 rpcnne0 11726 . . . . . . . . 9 (1 ∈ ℝ+ → (1 ∈ ℂ ∧ 1 ≠ 0))
5856, 57ax-mp 5 . . . . . . . 8 (1 ∈ ℂ ∧ 1 ≠ 0)
59 2cnne0 11119 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
60 divdiv2 10616 . . . . . . . 8 (((2↑-(!‘𝐴)) ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6158, 59, 60mp3an23 1408 . . . . . . 7 ((2↑-(!‘𝐴)) ∈ ℂ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
6233, 61syl 17 . . . . . 6 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (((2↑-(!‘𝐴)) · 2) / 1))
63 mulcom 9901 . . . . . . 7 ((2 ∈ ℂ ∧ (2↑-(!‘𝐴)) ∈ ℂ) → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6452, 33, 63sylancr 694 . . . . . 6 (𝐴 ∈ ℕ → (2 · (2↑-(!‘𝐴))) = ((2↑-(!‘𝐴)) · 2))
6555, 62, 643eqtr4d 2654 . . . . 5 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 / 2)) = (2 · (2↑-(!‘𝐴))))
6651, 65syl5eq 2656 . . . 4 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) / (1 − (1 / 2))) = (2 · (2↑-(!‘𝐴))))
6749, 66eqtrd 2644 . . 3 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐺𝑏) = (2 · (2↑-(!‘𝐴))))
6847, 67breqtrd 4609 . 2 (𝐴 ∈ ℕ → Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴))))
6943, 45, 683jca 1235 1 (𝐴 ∈ ℕ → (seq𝐴( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ𝐴)(𝐹𝑏) ≤ (2 · (2↑-(!‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cmpt 4643  dom cdm 5038  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  (,]cioc 12047  seqcseq 12663  cexp 12722  !cfa 12922  abscabs 13822  cli 14063  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioc 12051  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265
This theorem is referenced by:  aaliou3lem4  23905  aaliou3lem7  23908
  Copyright terms: Public domain W3C validator