MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem2 Structured version   Visualization version   GIF version

Theorem aaliou3lem2 23902
Description: Lemma for aaliou3 23910. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.a 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
aaliou3lem.b 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
Assertion
Ref Expression
aaliou3lem2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐹𝐵) ∈ (0(,](𝐺𝐵)))
Distinct variable groups:   𝐹,𝑐   𝐴,𝑎,𝑐   𝐵,𝑎,𝑐   𝐺,𝑎
Allowed substitution hints:   𝐹(𝑎)   𝐺(𝑐)

Proof of Theorem aaliou3lem2
Dummy variables 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluznn 11634 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ ℕ)
2 fveq2 6103 . . . . . . . 8 (𝑎 = 𝐵 → (!‘𝑎) = (!‘𝐵))
32negeqd 10154 . . . . . . 7 (𝑎 = 𝐵 → -(!‘𝑎) = -(!‘𝐵))
43oveq2d 6565 . . . . . 6 (𝑎 = 𝐵 → (2↑-(!‘𝑎)) = (2↑-(!‘𝐵)))
5 aaliou3lem.b . . . . . 6 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
6 ovex 6577 . . . . . 6 (2↑-(!‘𝐵)) ∈ V
74, 5, 6fvmpt 6191 . . . . 5 (𝐵 ∈ ℕ → (𝐹𝐵) = (2↑-(!‘𝐵)))
81, 7syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐹𝐵) = (2↑-(!‘𝐵)))
9 2rp 11713 . . . . 5 2 ∈ ℝ+
101nnnn0d 11228 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ ℕ0)
11 faccl 12932 . . . . . . . 8 (𝐵 ∈ ℕ0 → (!‘𝐵) ∈ ℕ)
1210, 11syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐵) ∈ ℕ)
1312nnzd 11357 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (!‘𝐵) ∈ ℤ)
1413znegcld 11360 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → -(!‘𝐵) ∈ ℤ)
15 rpexpcl 12741 . . . . 5 ((2 ∈ ℝ+ ∧ -(!‘𝐵) ∈ ℤ) → (2↑-(!‘𝐵)) ∈ ℝ+)
169, 14, 15sylancr 694 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (2↑-(!‘𝐵)) ∈ ℝ+)
178, 16eqeltrd 2688 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐹𝐵) ∈ ℝ+)
1817rpred 11748 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐹𝐵) ∈ ℝ)
1917rpgt0d 11751 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → 0 < (𝐹𝐵))
20 fveq2 6103 . . . . . 6 (𝑏 = 𝐴 → (𝐹𝑏) = (𝐹𝐴))
21 fveq2 6103 . . . . . 6 (𝑏 = 𝐴 → (𝐺𝑏) = (𝐺𝐴))
2220, 21breq12d 4596 . . . . 5 (𝑏 = 𝐴 → ((𝐹𝑏) ≤ (𝐺𝑏) ↔ (𝐹𝐴) ≤ (𝐺𝐴)))
2322imbi2d 329 . . . 4 (𝑏 = 𝐴 → ((𝐴 ∈ ℕ → (𝐹𝑏) ≤ (𝐺𝑏)) ↔ (𝐴 ∈ ℕ → (𝐹𝐴) ≤ (𝐺𝐴))))
24 fveq2 6103 . . . . . 6 (𝑏 = 𝑑 → (𝐹𝑏) = (𝐹𝑑))
25 fveq2 6103 . . . . . 6 (𝑏 = 𝑑 → (𝐺𝑏) = (𝐺𝑑))
2624, 25breq12d 4596 . . . . 5 (𝑏 = 𝑑 → ((𝐹𝑏) ≤ (𝐺𝑏) ↔ (𝐹𝑑) ≤ (𝐺𝑑)))
2726imbi2d 329 . . . 4 (𝑏 = 𝑑 → ((𝐴 ∈ ℕ → (𝐹𝑏) ≤ (𝐺𝑏)) ↔ (𝐴 ∈ ℕ → (𝐹𝑑) ≤ (𝐺𝑑))))
28 fveq2 6103 . . . . . 6 (𝑏 = (𝑑 + 1) → (𝐹𝑏) = (𝐹‘(𝑑 + 1)))
29 fveq2 6103 . . . . . 6 (𝑏 = (𝑑 + 1) → (𝐺𝑏) = (𝐺‘(𝑑 + 1)))
3028, 29breq12d 4596 . . . . 5 (𝑏 = (𝑑 + 1) → ((𝐹𝑏) ≤ (𝐺𝑏) ↔ (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1))))
3130imbi2d 329 . . . 4 (𝑏 = (𝑑 + 1) → ((𝐴 ∈ ℕ → (𝐹𝑏) ≤ (𝐺𝑏)) ↔ (𝐴 ∈ ℕ → (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1)))))
32 fveq2 6103 . . . . . 6 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
33 fveq2 6103 . . . . . 6 (𝑏 = 𝐵 → (𝐺𝑏) = (𝐺𝐵))
3432, 33breq12d 4596 . . . . 5 (𝑏 = 𝐵 → ((𝐹𝑏) ≤ (𝐺𝑏) ↔ (𝐹𝐵) ≤ (𝐺𝐵)))
3534imbi2d 329 . . . 4 (𝑏 = 𝐵 → ((𝐴 ∈ ℕ → (𝐹𝑏) ≤ (𝐺𝑏)) ↔ (𝐴 ∈ ℕ → (𝐹𝐵) ≤ (𝐺𝐵))))
36 nnnn0 11176 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
37 faccl 12932 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (!‘𝐴) ∈ ℕ)
3836, 37syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℕ)
3938nnzd 11357 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (!‘𝐴) ∈ ℤ)
4039znegcld 11360 . . . . . . . . . 10 (𝐴 ∈ ℕ → -(!‘𝐴) ∈ ℤ)
41 rpexpcl 12741 . . . . . . . . . 10 ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+)
429, 40, 41sylancr 694 . . . . . . . . 9 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℝ+)
4342rpred 11748 . . . . . . . 8 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℝ)
4443leidd 10473 . . . . . . 7 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ≤ (2↑-(!‘𝐴)))
45 nncn 10905 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
4645subidd 10259 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (𝐴𝐴) = 0)
4746oveq2d 6565 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((1 / 2)↑(𝐴𝐴)) = ((1 / 2)↑0))
48 halfcn 11124 . . . . . . . . . . 11 (1 / 2) ∈ ℂ
49 exp0 12726 . . . . . . . . . . 11 ((1 / 2) ∈ ℂ → ((1 / 2)↑0) = 1)
5048, 49ax-mp 5 . . . . . . . . . 10 ((1 / 2)↑0) = 1
5147, 50syl6eq 2660 . . . . . . . . 9 (𝐴 ∈ ℕ → ((1 / 2)↑(𝐴𝐴)) = 1)
5251oveq2d 6565 . . . . . . . 8 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴𝐴))) = ((2↑-(!‘𝐴)) · 1))
5342rpcnd 11750 . . . . . . . . 9 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ∈ ℂ)
5453mulid1d 9936 . . . . . . . 8 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) · 1) = (2↑-(!‘𝐴)))
5552, 54eqtrd 2644 . . . . . . 7 (𝐴 ∈ ℕ → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴𝐴))) = (2↑-(!‘𝐴)))
5644, 55breqtrrd 4611 . . . . . 6 (𝐴 ∈ ℕ → (2↑-(!‘𝐴)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴𝐴))))
57 fveq2 6103 . . . . . . . . 9 (𝑎 = 𝐴 → (!‘𝑎) = (!‘𝐴))
5857negeqd 10154 . . . . . . . 8 (𝑎 = 𝐴 → -(!‘𝑎) = -(!‘𝐴))
5958oveq2d 6565 . . . . . . 7 (𝑎 = 𝐴 → (2↑-(!‘𝑎)) = (2↑-(!‘𝐴)))
60 ovex 6577 . . . . . . 7 (2↑-(!‘𝐴)) ∈ V
6159, 5, 60fvmpt 6191 . . . . . 6 (𝐴 ∈ ℕ → (𝐹𝐴) = (2↑-(!‘𝐴)))
62 nnz 11276 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
63 uzid 11578 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
64 oveq1 6556 . . . . . . . . . 10 (𝑐 = 𝐴 → (𝑐𝐴) = (𝐴𝐴))
6564oveq2d 6565 . . . . . . . . 9 (𝑐 = 𝐴 → ((1 / 2)↑(𝑐𝐴)) = ((1 / 2)↑(𝐴𝐴)))
6665oveq2d 6565 . . . . . . . 8 (𝑐 = 𝐴 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴𝐴))))
67 aaliou3lem.a . . . . . . . 8 𝐺 = (𝑐 ∈ (ℤ𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))))
68 ovex 6577 . . . . . . . 8 ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴𝐴))) ∈ V
6966, 67, 68fvmpt 6191 . . . . . . 7 (𝐴 ∈ (ℤ𝐴) → (𝐺𝐴) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴𝐴))))
7062, 63, 693syl 18 . . . . . 6 (𝐴 ∈ ℕ → (𝐺𝐴) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐴𝐴))))
7156, 61, 703brtr4d 4615 . . . . 5 (𝐴 ∈ ℕ → (𝐹𝐴) ≤ (𝐺𝐴))
7271a1i 11 . . . 4 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ → (𝐹𝐴) ≤ (𝐺𝐴)))
73 eluznn 11634 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 𝑑 ∈ ℕ)
7473nnnn0d 11228 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 𝑑 ∈ ℕ0)
75 faccl 12932 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ ℕ0 → (!‘𝑑) ∈ ℕ)
7674, 75syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (!‘𝑑) ∈ ℕ)
7776nnzd 11357 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (!‘𝑑) ∈ ℤ)
7877znegcld 11360 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → -(!‘𝑑) ∈ ℤ)
79 rpexpcl 12741 . . . . . . . . . . . . . 14 ((2 ∈ ℝ+ ∧ -(!‘𝑑) ∈ ℤ) → (2↑-(!‘𝑑)) ∈ ℝ+)
809, 78, 79sylancr 694 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑-(!‘𝑑)) ∈ ℝ+)
8180rpred 11748 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑-(!‘𝑑)) ∈ ℝ)
8280rpge0d 11752 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 0 ≤ (2↑-(!‘𝑑)))
83 simpl 472 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ)
8483nnnn0d 11228 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 𝐴 ∈ ℕ0)
8584, 37syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℕ)
8685nnzd 11357 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (!‘𝐴) ∈ ℤ)
8786znegcld 11360 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → -(!‘𝐴) ∈ ℤ)
889, 87, 41sylancr 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+)
89 halfre 11123 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ
90 halfgt0 11125 . . . . . . . . . . . . . . . 16 0 < (1 / 2)
9189, 90elrpii 11711 . . . . . . . . . . . . . . 15 (1 / 2) ∈ ℝ+
92 eluzelz 11573 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (ℤ𝐴) → 𝑑 ∈ ℤ)
93 zsubcl 11296 . . . . . . . . . . . . . . . 16 ((𝑑 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑑𝐴) ∈ ℤ)
9492, 62, 93syl2anr 494 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝑑𝐴) ∈ ℤ)
95 rpexpcl 12741 . . . . . . . . . . . . . . 15 (((1 / 2) ∈ ℝ+ ∧ (𝑑𝐴) ∈ ℤ) → ((1 / 2)↑(𝑑𝐴)) ∈ ℝ+)
9691, 94, 95sylancr 694 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((1 / 2)↑(𝑑𝐴)) ∈ ℝ+)
9788, 96rpmulcld 11764 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∈ ℝ+)
9897rpred 11748 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∈ ℝ)
9981, 82, 98jca31 555 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (((2↑-(!‘𝑑)) ∈ ℝ ∧ 0 ≤ (2↑-(!‘𝑑))) ∧ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∈ ℝ))
10099adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴)))) → (((2↑-(!‘𝑑)) ∈ ℝ ∧ 0 ≤ (2↑-(!‘𝑑))) ∧ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∈ ℝ))
10192adantl 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 𝑑 ∈ ℤ)
10278, 101zmulcld 11364 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-(!‘𝑑) · 𝑑) ∈ ℤ)
103 rpexpcl 12741 . . . . . . . . . . . . . 14 ((2 ∈ ℝ+ ∧ (-(!‘𝑑) · 𝑑) ∈ ℤ) → (2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ+)
1049, 102, 103sylancr 694 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ+)
105104rpred 11748 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ)
106104rpge0d 11752 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 0 ≤ (2↑(-(!‘𝑑) · 𝑑)))
10789a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (1 / 2) ∈ ℝ)
108105, 106, 107jca31 555 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (((2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ ∧ 0 ≤ (2↑(-(!‘𝑑) · 𝑑))) ∧ (1 / 2) ∈ ℝ))
109108adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴)))) → (((2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ ∧ 0 ≤ (2↑(-(!‘𝑑) · 𝑑))) ∧ (1 / 2) ∈ ℝ))
110 simpr 476 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴)))) → (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))))
11176nncnd 10913 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (!‘𝑑) ∈ ℂ)
112101zcnd 11359 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 𝑑 ∈ ℂ)
113111, 112mulneg1d 10362 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-(!‘𝑑) · 𝑑) = -((!‘𝑑) · 𝑑))
11476, 73nnmulcld 10945 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((!‘𝑑) · 𝑑) ∈ ℕ)
115114nnge1d 10940 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 1 ≤ ((!‘𝑑) · 𝑑))
116 1re 9918 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
117114nnred 10912 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((!‘𝑑) · 𝑑) ∈ ℝ)
118 leneg 10410 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ ((!‘𝑑) · 𝑑) ∈ ℝ) → (1 ≤ ((!‘𝑑) · 𝑑) ↔ -((!‘𝑑) · 𝑑) ≤ -1))
119116, 117, 118sylancr 694 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (1 ≤ ((!‘𝑑) · 𝑑) ↔ -((!‘𝑑) · 𝑑) ≤ -1))
120115, 119mpbid 221 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → -((!‘𝑑) · 𝑑) ≤ -1)
121113, 120eqbrtrd 4605 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-(!‘𝑑) · 𝑑) ≤ -1)
122 neg1z 11290 . . . . . . . . . . . . . . 15 -1 ∈ ℤ
123 eluz 11577 . . . . . . . . . . . . . . 15 (((-(!‘𝑑) · 𝑑) ∈ ℤ ∧ -1 ∈ ℤ) → (-1 ∈ (ℤ‘(-(!‘𝑑) · 𝑑)) ↔ (-(!‘𝑑) · 𝑑) ≤ -1))
124102, 122, 123sylancl 693 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-1 ∈ (ℤ‘(-(!‘𝑑) · 𝑑)) ↔ (-(!‘𝑑) · 𝑑) ≤ -1))
125121, 124mpbird 246 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → -1 ∈ (ℤ‘(-(!‘𝑑) · 𝑑)))
126 2re 10967 . . . . . . . . . . . . . 14 2 ∈ ℝ
127 1le2 11118 . . . . . . . . . . . . . 14 1 ≤ 2
128 leexp2a 12778 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ -1 ∈ (ℤ‘(-(!‘𝑑) · 𝑑))) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (2↑-1))
129126, 127, 128mp3an12 1406 . . . . . . . . . . . . 13 (-1 ∈ (ℤ‘(-(!‘𝑑) · 𝑑)) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (2↑-1))
130125, 129syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (2↑-1))
131 2cn 10968 . . . . . . . . . . . . 13 2 ∈ ℂ
132 expn1 12732 . . . . . . . . . . . . 13 (2 ∈ ℂ → (2↑-1) = (1 / 2))
133131, 132ax-mp 5 . . . . . . . . . . . 12 (2↑-1) = (1 / 2)
134130, 133syl6breq 4624 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (1 / 2))
135134adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴)))) → (2↑(-(!‘𝑑) · 𝑑)) ≤ (1 / 2))
136 lemul12a 10760 . . . . . . . . . . 11 (((((2↑-(!‘𝑑)) ∈ ℝ ∧ 0 ≤ (2↑-(!‘𝑑))) ∧ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∈ ℝ) ∧ (((2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ ∧ 0 ≤ (2↑(-(!‘𝑑) · 𝑑))) ∧ (1 / 2) ∈ ℝ)) → (((2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∧ (2↑(-(!‘𝑑) · 𝑑)) ≤ (1 / 2)) → ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))) ≤ (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) · (1 / 2))))
1371363impia 1253 . . . . . . . . . 10 (((((2↑-(!‘𝑑)) ∈ ℝ ∧ 0 ≤ (2↑-(!‘𝑑))) ∧ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∈ ℝ) ∧ (((2↑(-(!‘𝑑) · 𝑑)) ∈ ℝ ∧ 0 ≤ (2↑(-(!‘𝑑) · 𝑑))) ∧ (1 / 2) ∈ ℝ) ∧ ((2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∧ (2↑(-(!‘𝑑) · 𝑑)) ≤ (1 / 2))) → ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))) ≤ (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) · (1 / 2)))
138100, 109, 110, 135, 137syl112anc 1322 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) ∧ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴)))) → ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))) ≤ (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) · (1 / 2)))
139138ex 449 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) → ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))) ≤ (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) · (1 / 2))))
140 facp1 12927 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ0 → (!‘(𝑑 + 1)) = ((!‘𝑑) · (𝑑 + 1)))
14174, 140syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (!‘(𝑑 + 1)) = ((!‘𝑑) · (𝑑 + 1)))
142141negeqd 10154 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → -(!‘(𝑑 + 1)) = -((!‘𝑑) · (𝑑 + 1)))
143 ax-1cn 9873 . . . . . . . . . . . . . . 15 1 ∈ ℂ
144 addcom 10101 . . . . . . . . . . . . . . 15 ((𝑑 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑑 + 1) = (1 + 𝑑))
145112, 143, 144sylancl 693 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝑑 + 1) = (1 + 𝑑))
146145oveq2d 6565 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-(!‘𝑑) · (𝑑 + 1)) = (-(!‘𝑑) · (1 + 𝑑)))
147 peano2cn 10087 . . . . . . . . . . . . . . 15 (𝑑 ∈ ℂ → (𝑑 + 1) ∈ ℂ)
148112, 147syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝑑 + 1) ∈ ℂ)
149111, 148mulneg1d 10362 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-(!‘𝑑) · (𝑑 + 1)) = -((!‘𝑑) · (𝑑 + 1)))
15078zcnd 11359 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → -(!‘𝑑) ∈ ℂ)
151 1cnd 9935 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 1 ∈ ℂ)
152150, 151, 112adddid 9943 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-(!‘𝑑) · (1 + 𝑑)) = ((-(!‘𝑑) · 1) + (-(!‘𝑑) · 𝑑)))
153150mulid1d 9936 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-(!‘𝑑) · 1) = -(!‘𝑑))
154153oveq1d 6564 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((-(!‘𝑑) · 1) + (-(!‘𝑑) · 𝑑)) = (-(!‘𝑑) + (-(!‘𝑑) · 𝑑)))
155152, 154eqtrd 2644 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (-(!‘𝑑) · (1 + 𝑑)) = (-(!‘𝑑) + (-(!‘𝑑) · 𝑑)))
156146, 149, 1553eqtr3d 2652 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → -((!‘𝑑) · (𝑑 + 1)) = (-(!‘𝑑) + (-(!‘𝑑) · 𝑑)))
157142, 156eqtrd 2644 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → -(!‘(𝑑 + 1)) = (-(!‘𝑑) + (-(!‘𝑑) · 𝑑)))
158157oveq2d 6565 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑-(!‘(𝑑 + 1))) = (2↑(-(!‘𝑑) + (-(!‘𝑑) · 𝑑))))
159 2cnne0 11119 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 ≠ 0)
160 expaddz 12766 . . . . . . . . . . . 12 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (-(!‘𝑑) ∈ ℤ ∧ (-(!‘𝑑) · 𝑑) ∈ ℤ)) → (2↑(-(!‘𝑑) + (-(!‘𝑑) · 𝑑))) = ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))))
161159, 160mpan 702 . . . . . . . . . . 11 ((-(!‘𝑑) ∈ ℤ ∧ (-(!‘𝑑) · 𝑑) ∈ ℤ) → (2↑(-(!‘𝑑) + (-(!‘𝑑) · 𝑑))) = ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))))
16278, 102, 161syl2anc 691 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑(-(!‘𝑑) + (-(!‘𝑑) · 𝑑))) = ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))))
163158, 162eqtrd 2644 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑-(!‘(𝑑 + 1))) = ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))))
16445adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → 𝐴 ∈ ℂ)
165112, 151, 164addsubd 10292 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((𝑑 + 1) − 𝐴) = ((𝑑𝐴) + 1))
166165oveq2d 6565 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((1 / 2)↑((𝑑 + 1) − 𝐴)) = ((1 / 2)↑((𝑑𝐴) + 1)))
167 uznn0sub 11595 . . . . . . . . . . . . . 14 (𝑑 ∈ (ℤ𝐴) → (𝑑𝐴) ∈ ℕ0)
168167adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝑑𝐴) ∈ ℕ0)
169 expp1 12729 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℂ ∧ (𝑑𝐴) ∈ ℕ0) → ((1 / 2)↑((𝑑𝐴) + 1)) = (((1 / 2)↑(𝑑𝐴)) · (1 / 2)))
17048, 168, 169sylancr 694 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((1 / 2)↑((𝑑𝐴) + 1)) = (((1 / 2)↑(𝑑𝐴)) · (1 / 2)))
171166, 170eqtrd 2644 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((1 / 2)↑((𝑑 + 1) − 𝐴)) = (((1 / 2)↑(𝑑𝐴)) · (1 / 2)))
172171oveq2d 6565 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))) = ((2↑-(!‘𝐴)) · (((1 / 2)↑(𝑑𝐴)) · (1 / 2))))
17388rpcnd 11750 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (2↑-(!‘𝐴)) ∈ ℂ)
17496rpcnd 11750 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((1 / 2)↑(𝑑𝐴)) ∈ ℂ)
17548a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (1 / 2) ∈ ℂ)
176173, 174, 175mulassd 9942 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) · (1 / 2)) = ((2↑-(!‘𝐴)) · (((1 / 2)↑(𝑑𝐴)) · (1 / 2))))
177172, 176eqtr4d 2647 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))) = (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) · (1 / 2)))
178163, 177breq12d 4596 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((2↑-(!‘(𝑑 + 1))) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))) ↔ ((2↑-(!‘𝑑)) · (2↑(-(!‘𝑑) · 𝑑))) ≤ (((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) · (1 / 2))))
179139, 178sylibrd 248 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) → (2↑-(!‘(𝑑 + 1))) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴)))))
180 fveq2 6103 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (!‘𝑎) = (!‘𝑑))
181180negeqd 10154 . . . . . . . . . . 11 (𝑎 = 𝑑 → -(!‘𝑎) = -(!‘𝑑))
182181oveq2d 6565 . . . . . . . . . 10 (𝑎 = 𝑑 → (2↑-(!‘𝑎)) = (2↑-(!‘𝑑)))
183 ovex 6577 . . . . . . . . . 10 (2↑-(!‘𝑑)) ∈ V
184182, 5, 183fvmpt 6191 . . . . . . . . 9 (𝑑 ∈ ℕ → (𝐹𝑑) = (2↑-(!‘𝑑)))
18573, 184syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝐹𝑑) = (2↑-(!‘𝑑)))
186 oveq1 6556 . . . . . . . . . . . 12 (𝑐 = 𝑑 → (𝑐𝐴) = (𝑑𝐴))
187186oveq2d 6565 . . . . . . . . . . 11 (𝑐 = 𝑑 → ((1 / 2)↑(𝑐𝐴)) = ((1 / 2)↑(𝑑𝐴)))
188187oveq2d 6565 . . . . . . . . . 10 (𝑐 = 𝑑 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))))
189 ovex 6577 . . . . . . . . . 10 ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))) ∈ V
190188, 67, 189fvmpt 6191 . . . . . . . . 9 (𝑑 ∈ (ℤ𝐴) → (𝐺𝑑) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))))
191190adantl 481 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝐺𝑑) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴))))
192185, 191breq12d 4596 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((𝐹𝑑) ≤ (𝐺𝑑) ↔ (2↑-(!‘𝑑)) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑑𝐴)))))
19373peano2nnd 10914 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝑑 + 1) ∈ ℕ)
194 fveq2 6103 . . . . . . . . . . . 12 (𝑎 = (𝑑 + 1) → (!‘𝑎) = (!‘(𝑑 + 1)))
195194negeqd 10154 . . . . . . . . . . 11 (𝑎 = (𝑑 + 1) → -(!‘𝑎) = -(!‘(𝑑 + 1)))
196195oveq2d 6565 . . . . . . . . . 10 (𝑎 = (𝑑 + 1) → (2↑-(!‘𝑎)) = (2↑-(!‘(𝑑 + 1))))
197 ovex 6577 . . . . . . . . . 10 (2↑-(!‘(𝑑 + 1))) ∈ V
198196, 5, 197fvmpt 6191 . . . . . . . . 9 ((𝑑 + 1) ∈ ℕ → (𝐹‘(𝑑 + 1)) = (2↑-(!‘(𝑑 + 1))))
199193, 198syl 17 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝐹‘(𝑑 + 1)) = (2↑-(!‘(𝑑 + 1))))
200 peano2uz 11617 . . . . . . . . . 10 (𝑑 ∈ (ℤ𝐴) → (𝑑 + 1) ∈ (ℤ𝐴))
201 oveq1 6556 . . . . . . . . . . . . 13 (𝑐 = (𝑑 + 1) → (𝑐𝐴) = ((𝑑 + 1) − 𝐴))
202201oveq2d 6565 . . . . . . . . . . . 12 (𝑐 = (𝑑 + 1) → ((1 / 2)↑(𝑐𝐴)) = ((1 / 2)↑((𝑑 + 1) − 𝐴)))
203202oveq2d 6565 . . . . . . . . . . 11 (𝑐 = (𝑑 + 1) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))))
204 ovex 6577 . . . . . . . . . . 11 ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))) ∈ V
205203, 67, 204fvmpt 6191 . . . . . . . . . 10 ((𝑑 + 1) ∈ (ℤ𝐴) → (𝐺‘(𝑑 + 1)) = ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))))
206200, 205syl 17 . . . . . . . . 9 (𝑑 ∈ (ℤ𝐴) → (𝐺‘(𝑑 + 1)) = ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))))
207206adantl 481 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → (𝐺‘(𝑑 + 1)) = ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴))))
208199, 207breq12d 4596 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1)) ↔ (2↑-(!‘(𝑑 + 1))) ≤ ((2↑-(!‘𝐴)) · ((1 / 2)↑((𝑑 + 1) − 𝐴)))))
209179, 192, 2083imtr4d 282 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑑 ∈ (ℤ𝐴)) → ((𝐹𝑑) ≤ (𝐺𝑑) → (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1))))
210209expcom 450 . . . . 5 (𝑑 ∈ (ℤ𝐴) → (𝐴 ∈ ℕ → ((𝐹𝑑) ≤ (𝐺𝑑) → (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1)))))
211210a2d 29 . . . 4 (𝑑 ∈ (ℤ𝐴) → ((𝐴 ∈ ℕ → (𝐹𝑑) ≤ (𝐺𝑑)) → (𝐴 ∈ ℕ → (𝐹‘(𝑑 + 1)) ≤ (𝐺‘(𝑑 + 1)))))
21223, 27, 31, 35, 72, 211uzind4 11622 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴 ∈ ℕ → (𝐹𝐵) ≤ (𝐺𝐵)))
213212impcom 445 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐹𝐵) ≤ (𝐺𝐵))
214 0xr 9965 . . 3 0 ∈ ℝ*
21567aaliou3lem1 23901 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐺𝐵) ∈ ℝ)
216 elioc2 12107 . . 3 ((0 ∈ ℝ* ∧ (𝐺𝐵) ∈ ℝ) → ((𝐹𝐵) ∈ (0(,](𝐺𝐵)) ↔ ((𝐹𝐵) ∈ ℝ ∧ 0 < (𝐹𝐵) ∧ (𝐹𝐵) ≤ (𝐺𝐵))))
217214, 215, 216sylancr 694 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → ((𝐹𝐵) ∈ (0(,](𝐺𝐵)) ↔ ((𝐹𝐵) ∈ ℝ ∧ 0 < (𝐹𝐵) ∧ (𝐹𝐵) ≤ (𝐺𝐵))))
21818, 19, 213, 217mpbir3and 1238 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ𝐴)) → (𝐹𝐵) ∈ (0(,](𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  (,]cioc 12047  cexp 12722  !cfa 12922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioc 12051  df-seq 12664  df-exp 12723  df-fac 12923
This theorem is referenced by:  aaliou3lem3  23903
  Copyright terms: Public domain W3C validator