Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aaliou3lem1 | Structured version Visualization version GIF version |
Description: Lemma for aaliou3 23910. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
aaliou3lem.a | ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) |
Ref | Expression |
---|---|
aaliou3lem1 | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6556 | . . . . . 6 ⊢ (𝑐 = 𝐵 → (𝑐 − 𝐴) = (𝐵 − 𝐴)) | |
2 | 1 | oveq2d 6565 | . . . . 5 ⊢ (𝑐 = 𝐵 → ((1 / 2)↑(𝑐 − 𝐴)) = ((1 / 2)↑(𝐵 − 𝐴))) |
3 | 2 | oveq2d 6565 | . . . 4 ⊢ (𝑐 = 𝐵 → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴))) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
4 | aaliou3lem.a | . . . 4 ⊢ 𝐺 = (𝑐 ∈ (ℤ≥‘𝐴) ↦ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝑐 − 𝐴)))) | |
5 | ovex 6577 | . . . 4 ⊢ ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ V | |
6 | 3, 4, 5 | fvmpt 6191 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐺‘𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
7 | 6 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) = ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴)))) |
8 | 2rp 11713 | . . . . 5 ⊢ 2 ∈ ℝ+ | |
9 | simpl 472 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ ℕ) | |
10 | 9 | nnnn0d 11228 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐴 ∈ ℕ0) |
11 | faccl 12932 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) ∈ ℕ) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℕ) |
13 | 12 | nnzd 11357 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (!‘𝐴) ∈ ℤ) |
14 | 13 | znegcld 11360 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → -(!‘𝐴) ∈ ℤ) |
15 | rpexpcl 12741 | . . . . 5 ⊢ ((2 ∈ ℝ+ ∧ -(!‘𝐴) ∈ ℤ) → (2↑-(!‘𝐴)) ∈ ℝ+) | |
16 | 8, 14, 15 | sylancr 694 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (2↑-(!‘𝐴)) ∈ ℝ+) |
17 | halfre 11123 | . . . . . 6 ⊢ (1 / 2) ∈ ℝ | |
18 | halfgt0 11125 | . . . . . 6 ⊢ 0 < (1 / 2) | |
19 | 17, 18 | elrpii 11711 | . . . . 5 ⊢ (1 / 2) ∈ ℝ+ |
20 | eluzelz 11573 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
21 | nnz 11276 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
22 | zsubcl 11296 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐵 − 𝐴) ∈ ℤ) | |
23 | 20, 21, 22 | syl2anr 494 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐵 − 𝐴) ∈ ℤ) |
24 | rpexpcl 12741 | . . . . 5 ⊢ (((1 / 2) ∈ ℝ+ ∧ (𝐵 − 𝐴) ∈ ℤ) → ((1 / 2)↑(𝐵 − 𝐴)) ∈ ℝ+) | |
25 | 19, 23, 24 | sylancr 694 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((1 / 2)↑(𝐵 − 𝐴)) ∈ ℝ+) |
26 | 16, 25 | rpmulcld 11764 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ ℝ+) |
27 | 26 | rpred 11748 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → ((2↑-(!‘𝐴)) · ((1 / 2)↑(𝐵 − 𝐴))) ∈ ℝ) |
28 | 7, 27 | eqeltrd 2688 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐺‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 1c1 9816 · cmul 9820 − cmin 10145 -cneg 10146 / cdiv 10563 ℕcn 10897 2c2 10947 ℕ0cn0 11169 ℤcz 11254 ℤ≥cuz 11563 ℝ+crp 11708 ↑cexp 12722 !cfa 12922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-seq 12664 df-exp 12723 df-fac 12923 |
This theorem is referenced by: aaliou3lem2 23902 aaliou3lem3 23903 |
Copyright terms: Public domain | W3C validator |